
ELASM: Error-Latency-Aware Scale Management
for Fully Homomorphic Encryption

Yongwoo Lee1, Seonyoung Cheon1, Dongkwan Kim1, Dongyoon Lee2, and Hanjun Kim1

1Yonsei University
2Stony Brook University

Abstract
Thanks to its fixed-point arithmetic and SIMD-like vector-

ization, among fully homomorphic encryption (FHE) schemes
that allow computation on encrypted data, RNS-CKKS is
widely used for privacy-preserving machine learning services.
Prior works have partly automated a daunting scale manage-
ment task required for RNS-CKKS fixed-point arithmetic, yet
none takes an output error into consideration, preventing users
from exploring a better error-latency trade-off.

This work proposes a new error- and latency-aware scale
management (ELASM) scheme for the RNS-CKKS FHE
scheme. By actively controlling the scale of a ciphertext,
one can effectively make the impact of noise on an error
smaller because an error is a scaled noise introduced by an
RNS-CKKS operation. ELASM explores different scale man-
agement plans that repurpose an upscale operation as an
error reduction operation, estimates the output error and la-
tency of each plan, and iteratively finds the best plan that
minimizes the error-latency cost function. In addition, this
work proposes a new scale-to-noise ratio (SNR) parameter
and introduces fine-grained noise-aware waterlines (a mini-
mum scale requirement) for different RNS-CKKS operations,
opening a new opportunity to further improve an error-latency
trade-off.

This work implements the proposed ideas in the ELASM
compiler along with a new FHE language and type system that
enforces the RNS-CKKS constraints including SNR-based
noise-aware waterlines. For ten machine and deep learning
benchmarks, ELASM finds the better error and latency trade-
offs (lower Pareto curves) than the state-of-the-art solutions
such as EVA and Hecate.

1 Introduction

Fully homomorphic encryption (FHE) [2] allows analytical
functions to be applied to encrypted data and produces the
same encrypted results as if the computations were performed
without encryption. The homomorphic property of FHE en-
ables users to offload heavy computation to a third party

safely (e.g., cloud service) and promises privacy-preserving
machine learning (ML) services in highly regulated fields
such as healthcare, financial, and insurance [4,41,42,47]. For
example, Microsoft and IBM have demonstrated their practice
use cases in bioinformatics and finance [29, 50].

Among various FHE schemes [8, 10, 11, 14–16, 21–23, 30,
32–36], the state-of-the-art RNS-CKKS [15] scheme is widely
used for ML applications thanks to two distinct features, sup-
porting (1) fixed-point arithmetic by scaling fixed-point num-
bers as integers and (2) SIMD-like vectorization (also referred
to as batching) for data parallelism. These features make
RNS-CKKS well-suited to ML applications that require a
large number of floating-point operations yet are inherently
tolerant to some errors [53]. Thus, RNS-CKKS has become
the main target of many FHE libraries (e.g., SEAL [51], HE-
lib [39], HEAAN [31]) and FHE compilers (e.g., EVA [26],
CHET [27], Hecate [45]).

However, developing a correct (recoverable), precise
(smaller error), and efficient (less latency) privacy-preserving
ML application with RNS-CKKS is intractably challenging
due to the manual ciphertext scale management requirements
in RNS-CKKS. In the fixed-point arithmetic of RNS-CKKS,
each multiplication increases the scale of a result ciphertext,
and the scale overflow leads to an unrecoverable result. On
the other hand, since some RNS-CKKS operations introduce
a scale-insensitive noise to a ciphertext, keeping the scale low
may cause the scale underflow problem, rendering the relative
error (the amount of noise over scale) in a ciphertext large.
To avoid overflow and underflow by keeping the ciphertext
scale between the maximum and minimum scales, developers
should carefully insert a scale management operation such as
rescale that reduces the scale of a ciphertext.

Besides correctness, developers should consider the im-
pacts of scale management on error and latency. The result
error accumulated from each RNS-CKKS operation affects
the Quality of Service (QoS) of an application. For example,
the prediction accuracy of ML applications drops if the result-
ing error becomes larger. Thus, developers should keep the
result error lower to achieve better QoS. On the other hand,

RNS-CKKS operations have different latencies depending
on the rescaling levels of their operands. Thus, manual scale
management becomes even harder because scale manage-
ment operations (e.g., rescale) at different locations have
non-trivial cascading effects on the program latency and the
noise introduced by the subsequent operations.

To address the problem, EVA [26] and Hecate [45] pro-
posed automatic scale management schemes. However, there
are two critical limitations that prevent users from explor-
ing better (Pareto-optimal) error-latency trade-offs. First, they
both do not take into account the effect of scale management
on the resulting error. EVA adds rescale operations if the
scale after rescaling remains higher than a minimum scale
threshold called waterline, which is (blindly) fixed as the
maximum scale of input ciphertexts without considering error
and latency. Hecate proposes a new scale management oper-
ation called downscale, which eagerly reduces the scale of
ciphertext to the fixed waterline and explores different scale
management options, but the exploration only considers la-
tency optimization. In sum, none considers an error during
scale management.

Second, they both rely on a coarse-grained noise-oblivious
waterline to control scale underflow. Each RNS-CKKS opera-
tion introduces a different amount of noise into a ciphertext.
As a result, their noise-oblivious waterline (which is set based
on the input scales) may be unnecessarily large for a low-noise
operation, or too small for a high-noise operation. Though a
very conservative waterline can prevent scale underflow, it
may lead to a worse latency-error trade-off.

This work proposes three new solutions that enable users
to explore better error and latency trade-offs. First, this work
proposes the first error estimation model for RNS-CKKS that
estimates the result error between plain and FHE computation
results. Each RNS-CKKS operation introduces a certain noise
depending on the operation type and the rescale level of its
operands. Since the error is a scaled noise and propagated to
the next operations, the error estimation model estimates the
result error from operation noises, considering a ciphertext’s
scale and a cascaded impact along the data flow.

Second, this work presents a new Error-Latency-Aware
Scale Management (ELASM) scheme that finds the best scale
management plan that minimizes the user-defined cost func-
tion about the error and latency. First, ELASM generates
various scale management plans by differently inserting scale
management operations. Then, ELASM estimates the result
error with the error estimation model and the latency by ac-
cumulating the latency of each RNS-CKKS operation. Based
on the estimation results, ELASM calculates the user-defined
cost function and finds the best plan with minimal cost. Unlike
prior work, since the cost function includes not only latency
but also error, ELASM may decide to increase the scale of a
ciphertext if its estimated cost is profitable.

Third, this work proposes a new scale-to-noise ratio (SNR)
parameter and introduces fine-grained noise-aware waterlines

for different RNS-CKKS operations. SNR allows the user
to specify the waterline management requirement such that
the ratio between the scale m of a ciphertext and the noise n
introduced by an operation must be greater than or equal to
SNR (i.e., m/n ≥ SNR), akin to the traditional signal-to-noise
ratio in signal processing. Given SNR, ELASM sets different
waterlines for different noisy operations such as rescale and
rotate, enabling a better error-latency trade-off.

This work implements the proposed ideas in the ELASM
compiler along with a new noise-aware FHE intermediate
representation (IR) and type system that reflect the RNS-
CKKS constraints and the proposed error-proportional SNR
parameter. The type system ensures that the scale manage-
ment always satisfies the FHE operation and noise constraints
during exploration.

This work evaluates the ELASM compiler with 10 bench-
marks consisting of various machine and deep learning al-
gorithms. ELASM shows a better error-latency trade-off
compared to the existing works. When average error and
latency values among explored results are used as constraints,
ELASM shows 16.7% and 24.9% lower latency and 4.2 bits
(18.1×) and 5.7 bits (51.2×) lower error than Hecate and
EVA. Additionally, we evaluate the error-proportionality of
error estimation and SNR parameter as the R2 value of linear
fitting with real error. The error proportionality of error esti-
mation and SNR parameter is 0.948 and 0.986, respectively.
Finally, the case study on an end-to-end application shows
that ELASM and its high error proportionality allow users to
control the error-latency trade-off with the SNR parameter.

The followings are the contributions of this work;
• the error-latency-aware scale management (ELASM) with

a new error estimation model;
• the new error-proportional parameter SNR that allows a

user to trade-off between error and latency;
• the new fine-grained noise-aware waterline management

scheme based on the SNR parameter;
• the ELASM IR and type system with the formal semantics

of the SNR parameter on RNS-CKKS; and
• the ELASM compiler framework that automates error-

latency-aware scale management.

2 Background on RNS-CKKS

Since Gentry’s breakthrough work in 2009 [32, 33], various
FHE schemes have been proposed such as BGV/BFV [10,30],
CKKS [15, 16], and GSW [37]. This paper focuses on RNS-
CKKS [15] which has shown to fit well to ML workloads [53],
thanks to its efficient support for fixed-point operations and
vectorization (data parallelism). While BGV/BFV support
vectorization, they are mainly designed for integer operations.
GSW is highly optimized for fast bootstrapping yet does not
support vectorization.

Table 1: Time complexity [27] and noise [40] of RNS-CKKS
operations. ELASM implicitly performs relinearize after
multiplication (so multiplication adds noise in ELASM). N:
polynomial modulus, l: level, σ: std. deviation.

RNS-CKKS Ops Time Complexity Noise
negate, add, mul O(N · l) 0
modswitch O(N · l) 0
rotate, relinearize O(NlogN · l2) 8

√
3

3 σlN + 8
√

2
3 N +

√
3N

rescale O(NlogN · l2) 8
√

2
3 N +

√
3N

2.1 Encryption Parameters
RNS-CKKS encodes a vector of raw data into a plaintext
cyclotomic polynomial [9] and encrypts the plaintext to a
ciphertext using the Ring Learning with Errors (RLWE) [46].
RNS-CKKS ciphertext requires users to manually determine
these two encryption parameters: polynomial modulus N and
coefficient modulus Q.

The polynomial modulus N affects security and perfor-
mance. The minimum value of N for a given Q is known for
a certain security level [3]: e.g., from N = 210 for Q = 227 to
N = 215 for Q = 2881 to achieve 128-bit security. Thus, N is
often determined by Q in practice. For performance, smaller
N (and equivalently smaller Q) is preferred as the latency of
RNS-CKKS operations linearly or log-linearly depends on
N [27] (See Table 1). On the other hand, coefficient modulus
Q is related to correctness: it should be set large enough to
avoid scale overflow, which we describe in the next section.

2.2 Scale Management
To efficiently support fixed-point arithmetic, RNS-CKKS en-
codes a real number as an integer with a scale, and encrypts
the integer as a ciphertext while storing the scale as its prop-
erty. For instance, the value x = 1.23 represents an integer
v = 123 with the scale m = 102. The encryption with RLWE
introduces some noise n to v, i.e., v = m·x±n. The problem
is that each multiplication of two ciphertexts makes the re-
sulting ciphertext value larger, as shown in Figure 1. When
it overflows the encryption parameter Q, the result becomes
unrecoverable. In other words, Q should be set large enough
for correctness.

To avoid the overflow and to keep Q (and N) small for
performance, RNS-CKKS supports a scale management op-
eration rescale that reduces the scale of a ciphertext: e.g.,
rescaling 1230 at scale 103 to 123 at scale 102. As Q should
be strictly divisible by the rescaling factor, EVA [26] and
Hecate [45] use a single rescaling factor, say R, and deter-
mine Q ≈ Rl as the power of the rescaling factor, where the
exponent is referred to as level l. Starting from the initial
(maximum) level L, each rescale consumes R and reduces
the level l by one. Figure 1 illustrates that rescale reduces
the scale m1·m2 to m1·m2/R and the level l from 4 to 3.

𝑣1

𝑅

𝑅

𝜀1 𝜀2

* =
𝑣1𝑣2

𝜀∗

𝑄 = 𝑅#

rescale

𝜀∗∗
𝑣1𝑣2/𝑅

𝑄 = 𝑅$

𝑣2

𝑄

𝑠𝑐𝑎𝑙𝑒: 𝑚% 𝑠𝑐𝑎𝑙𝑒: 𝑚& 𝑠𝑐𝑎𝑙𝑒: 𝑚%𝑚& 𝑠𝑐𝑎𝑙𝑒 ∶ 𝑚∗ = 𝑚%𝑚&/𝑅

𝑥# 𝑥$

𝑥#𝑥$ 𝑥#𝑥$

Figure 1: RNS-CKKS multiplication and rescaling. The real
value x is represented as integer v at scale m. The scaled
integer v includes some noise n. Simply put, v = m·x± n.
Multiplication (due to implicit relinearize operation) and
rescale operation introduce additional noises, nrelinearize and
nrescale, respectively. Thus, n∗ = m1x1n2 ±m2x2n1 ±n1n2 ±
nrelinearize and n∗∗ = n∗/R±nrescale where n∗ and n∗∗ refer to
the noise after multiplication and rescale, respectively. The
expectation of sum of noise ∥n1 ±n2∥ is (∥n1∥2 +∥n2∥2)1/2

2.3 Noise and Error
RNS-CKKS is constructed on RLWE [46] that adds and re-
moves a small random noise to a ciphertext during encryption
and decryption. Besides the initial noise added by encryption,
three RNS-CKKS operations (1) rescale, (2) rotate, and
(3) relinearize introduce additional noise into the resulting
ciphertext [40]. Table 1 lists its variance.

(1) rescale: rescale divides the integer value, scale,
and Q of ciphertext by the rescaling factor R and introduces
the rounding noise ∥nrescale∥ = 8

√
2

3 N +
√

3N that depends
only on N. In Figure 1, the noise after rescaling becomes
n∗∗ = n∗/R+nrescale where n∗ is the noise of input ciphertext.

(2) rotate: RNS-CKKS supports vectorization (for data
parallelism) in which a vector of N/2 values is encrypted as a
single ciphertext. Besides vector addition and multiplication,
it provides the rotate operation that rotates a vector by a
given amount. The rotation requires a key-switching process
that introduces a noise ∥nrotate∥ = 8

√
3

3 σlN + 8
√

2
3 N +

√
3N,

depending on both N and level l.
(3) relinearize: A ciphertext multiplication in RNS-

CKKS increases the number of polynomials in a cipher-
text, which in turn increases the computation cost of FHE
operations. RNS-CKKS supports the relinearize opera-
tion that reduces the number of polynomials inside a cipher-
text. Relinearization requires a key-switching process like
rotate, and thus introduces the same amount of noise. Exist-
ing RNS-CKKS compilers [26, 27, 45] including ours apply
relinearize operation on each ciphertext multiplication.
Thus, a ciphertext multiplication in effect is considered to
introduce additional noise nrelinearize, as depicted in Figure 1.

The computation error ε is defined to be the difference
between plain and FHE computation results. Note that RNS-
CKKS operations add noises regardless of the scale (See
Table 1). The amount of error ε is then determined by the

0 < l (1) l ≤ L (2)

|vi| ≤ Rl (3) RL ≤ fsec(k) (4)

l1 = l2 for v1 ⊕ v2 (5) m1 = m2 for v1 + v2 (6)

mw ≤ m (7) mop = SNR∗nop ≤ m (8)

Figure 2: RNS-CKKS Constraints. mi and li are the scale
and the level of vi. ⊕ represents binary operators + and ×.
This work proposes to use a new find-grained noise-aware
waterline (8), instead of (7).

amount of noise over scale: i.e., ε = n/m. For example, noise
n = 10 introduces error 0.01 for scale m = 103, and error
0.001 if m = 104. This relation implies that for a given noise,
a minimal scale requirement restricts the maximum error of
an FHE operation.

2.4 RNS-CKKS Constraints

The encryption parameters and a scale management scheme,
deciding where to place scale management operations (e.g.,
rescale, modswitch, etc.) and which operations to use,
should obey the constraints in Figure 2 for functional cor-
rectness and security guarantee.

Given the rescaling factor R, for a ciphertext with the scale
m, the level l (with the initial maximum L), and the vector-
ization slots k = N/2: Equations 1 and 2 are natural mini-
mum/maximum constraints on the level of a ciphertext: e.g.,
the level l monotonically decreases from initial maximum
L. Equation 3 prevents scale overflow: i.e., the scaled value
|v| should be always smaller than or equal to the coefficient
modulus Q = Rl at level l. Equation 4 ensures x-bit security
guarantee: i.e., the minimum N = 2k is determined by Q = RL

at level L according to [3].
RNS-CKKS further requires two more constraints on the

operands of binary operations. Equation 5 requires that the
operands of multiplication and addition should be at the same
level l (i.e., the same Q = Rl). If the level does not match,
developers should insert a modswitch operation that consumes
R without affecting the scale and only decreases the level
by one. Equation 6 enforces that the operands of addition
should have the same scale. If not, developers should add
an upscale operation, syntactic sugar for multiplying one
with an arbitrary scale, to increase the scale of an operand
ciphertext without changing the level.

Existing FHE compilers [26, 45] introduce the waterline
constraint (Equation 7) that specifies the minimum required
scale. In contrast, this work proposes a new minimum scale
constraint (Equation 8) based on the noise n, which will be
introduced in §4.

3 Motivation

This section discusses the existing scale management
schemes [26,45] and their limitations, motivating the need for
a new error-aware scale management scheme. The scale man-
agement scheme used in EVA [26], called waterline rescaling,
aims to keep the scale small. EVA keeps track of the scale
growth and inserts the rescale operation if the scale after
rescaling remains higher than the coarse-grained waterline
mw (See Equation 7 in Figure 2). The waterline is fixed as
the maximum scale of input ciphertexts, and users can alter
the input scale to adjust the waterline. Hecate [45] improves
waterline rescaling with a new rescaling operation called
downscale that can reduce the arbitrary amount of scale, but
follows the same waterline constraint.

Figures 3a and 3b show how EVA (and Hecate also) works
when computing rotate(0.1x), a part of convolution, for given
different input scales (waterlines) 102 and 103, and rescaling
factor R = 103. For waterline 102 (Figure 3a), EVA does not
add rescale as the scale after rescaling becomes smaller
than the waterline: i.e., 104/103 < 100. On the other hand,
for waterline 103 (Figure 3b), EVA inserts rescale to reduce
the scale from 106 to 103 between multiplication and rotation.

There are two critical limitations in the existing scale man-
agement schemes:

Limitation 1: Existing solutions do not control errors
during scale management. Increasing the waterline parame-
ter does not necessarily lead to a low error. Let us illustrate
the problem with the same rotate(0.1x) example. Consider
Figure 3a (input scale = 102) in which the bar graph represents
noise and the subscript number represents error. Suppose the
encryption adds an initial noise 10. As the input scale is 102,
the error of the first ciphertext x is 0.1 (See the subscript ±0.1
next to x.) Multiplication y = x·1/10 increases the scale of
y to 104 (= 102·102). Note that the new noise after multipli-
cation is m1x1n2 ±m2x2n1 ±n1n2 ±nrelinearize (See Figure 1).
Here, ∥n2∥ and ∥nrelinearize∥ are 0 because 1/10 is plaintext.
Thus, the noise becomes 100 (= 102·10·1/10) and the error is
0.01 (= 100/104). Finally, rotate introduces an additional
noise nrotate = 100, and the final noise and error become 140
(=

√
1002 +1002) and 0.014 (= 140/104).

Figure 3b (input scale = 103) shows that a higher input scale
unexpectedly leads to a higher error. After multiplication,
the scale of y becomes 106 (= 103·103), the noise grows to
1000 (= 103·10·1/10), and the error is 0.001 (= 1000/106).
In this case, EVA applies to rescale that divides the noise
by scale and adds ∥nrescale∥= 10. After rescaling, the scale is
103, the noise is 10 (≈

√
(1000/103)2 +102) and the error is

0.01 (= 10/103). Finally, rotate increases the noise to 100
(≈

√
1002 +102) after adding ∥nrotate∥= 100. The final error

becomes 0.1 (= 100/103), which is higher than in Figure 3a.
Limitation 2: They neglect noise differences among op-

erations and use a fixed noise-oblivious waterline. As dis-
cussed in §2.3, RNS-CKKS operations introduce a different

scale
10!

10"

10#

10$

10%

10&

10'

10(

10)

rotation

x+0.1 1/10

y+0.01 y+0.014

10

100 140

(a) Waterline=100

scale
10!

10"

10#

10$

10%

10&

10'

10(

10)

rotation

x+0.01 1/10

rescaley+0.001

y+0.100y+0.010

10

1000

10 100

(b) Waterline=1000

Figure 3: Comparison of the scale management of EVA with
different waterlines on the parts of convolution that compute
rotate(0.1x). A gray bar and a subscript represent the accu-
mulated noise and error in a ciphertext, respectively. A rescale
operation divides the scale and the encrypted value by 1000.
The noises of rescale and rotation are 10 and 100, respectively.

0

20

40

60

80

100

-2 -1 0 1 2

Accuracy (%)

Err(-log10)

98.63% 99.21%

59.94%

21.68%
10.91%

99.23%

Figure 4: Inference accuracy of LeNet-5 for different errors.

amount of noise into the resulting ciphertext. For instance,
the rotate operation adds the noise ∥nrotate∥= 100 in both
cases of Figure 3 and thus increases the resulting error. Yet,
EVA does not do anything special to tame those additional
noises although increasing the scale can reduce the impact
of noise on the error. Furthermore, the single fixed waterline
unnecessarily restricts the scale of an operation that has little
impact on the resulting error, preventing users from exploring
better latency-error trade-offs.

Importance of error management. An excessive out-
put error can have a negative impact on the quality of ser-
vice (QoS), even for error-tolerant ML applications. Figure 4
shows the prediction accuracy (QoS) of LeNet-5 on MNIST
dataset [28] when varying output errors. An unacceptable
accuracy drop occurs for large errors (− log∥ε∥ ≤ −1). For
smaller errors (− log∥ε∥≥−1), the accuracy slowly increases
as the output error decreases, opening an opportunity to take
different error-latency trade-off. The lack of error-aware scale
management and fine-grained waterline implies that existing
solutions provide no guarantee on output errors, and thus may
produce RNS-CKKS programs with an arbitrary amount of
errors. For example, Figure 5 shows that EVA’s compilation
parameter (i.e., waterline) fails to control the output error,
yielding an arbitrary variation in the output error. It makes
exploring the trade-off between latency and error non-trivial.

-3
-2
-1
0
1
2
3
4
5

13 15 17 19 21 23
Parameter

Output Error(log10)

Figure 5: The input scale parameter of EVA leads to an arbi-
trary variation in the output error in LeNet-5.

4 Overview

This work proposes (1) the new error-latency-aware scale
management (ELASM, §4.1) and (2) the new fine-grained
noise-aware waterline management with the new error-
proportional compile parameter called SNR (§4.2). Combined,
they enlarge scale management space and offer improved er-
ror and latency trade-offs. Moreover, this work implements
the proposed ideas in the ELASM compiler along with a new
noise-aware FHE IR and type system (§4.3).

4.1 Error-Latency-Aware Scale Management
The error-latency-aware scale management (ELASM) is de-
signed on the key observation that by increasing a scale, one
can effectively make the impact of noise on error smaller
(as the amount of error ε is determined by the amount of
noise over scale: i.e., ε = n/m). Unlike prior work which uses
upscale operation (which increases the scale of a ciphertext)
only to match the scales of addition operands, ELASM pro-
poses to use upscale as an error reduction operation also.

Consider the new example in Figure 6 that computes
rotate(0.1x)2. Suppose the input scale (or waterline) is 104;
the rescaling factor R = 103; and the noises of the rescale,
rotate, and relinearize (ciphertext multiplication) opera-
tions are 10, 1000, and 1000, respectively. Figure 6a shows
that existing work results in the error 0.1000.

Figure 6b illustrates that actively increasing a scale can
improve the output error (0.01). By applying upscale on
y2, the active upscaling scheme can effectively reduce the
impact of the noise introduced by rotate. Note that Figure 6b
introduces the same number (2) of rescale operations as
Figure 6a, leading to the same rescaling level. As the latency
largely depends on the level l (See Table 1), this implies
that two codes would show similar performance. As a result,
Figure 6b can offer a better error-latency trade-off.

Based on the insight, ELASM explores various scale man-
agement plans that place upscale operations at different loca-
tions and use different scaling factors. In particular, ELASM
employs Markov Chain Monte-Carlo (MCMC) sampling [38]
to iteratively find a better plan and optimize a latency-error
cost function. Users can define a custom cost function for

y2+0.1000

10!"

10!!

10!#

10$

10%

10&

10'

10(

10)

10*

10"

10!

10#

x+0.001 0.1

rotation

y2+1.00E-4

y2+2.8E-5

10

y+0.0001

10000

2.801×10!

10

scale

rescale

y+0.0001

14

rescale

1000

(a) Existing Work (EVA)

12

11

10

9

8

7

6

5

4

3

2

1

x+0.001 0.1

rotation

y2+1.04E-5

y2+2.8E-5

10

y+0.0001

2.8×10!

10.4

2.8×10"rescale

y+0.00014

14

y2+0.01

1000

rescale

y2+2.8E-5
upscale

10000

(b) Active Upscaling

12

11

10

9

8

7

6

5

4

3

2

1

x+0.01
0.1

y2+2E-4

rotation

y2+2E-4

10

y+0.001

100

rescale

upscale

22.4

2.00×10!
2.00×10"

y2+0.0002 y2+0.01

1000.2

(c) Noise-aware Waterline

Figure 6: Comparison of the scale management schemes of EVA and ELASM on the program that computes rotate(0.1x)2.
A gray bar (e.g., 10 on the leftmost bar) and a subscript (e.g., +0.001 next to the leftmost x) represent the accumulated noise
and error in a ciphertext, respectively. Rescaling factor R is 103. The noises introduced by rescale, rotate, and relinearize
(ciphertext multiplication) are 10, 1000, and 1000, respectively. For (a) and (b), the waterline is fixed as mw = 104. For (c), the
waterline is noise-aware and computed by mop = SNR×∥nop∥ where SNR is set to be 10.

ELASM as needed with the estimated latency and error. To
reduce the exploration overhead, ELASM estimates the error
and latency of each scale management plan (instead of actu-
ally running the generated code and measuring the metrics,
which may be slow). §5 discusses ELASM in depth.

4.2 Fine-grained Noise-aware Waterline

This work proposes a new scale-to-noise ratio (SNR) parame-
ter and introduces fine-grained noise-aware waterlines. Simi-
lar to the traditional signal-to-noise ratio in signal processing,
the SNR parameter allows users to specify the minimum ratio
between the scale m of a ciphertext and the noise n intro-
duced by an RNS-CKKS operation: i.e., SNR ≤ m/n. With
SNR, the waterline mw is no longer a fixed value set by the
input scale. The waterline becomes a function of a noise: i.e.,
mop = SNR×∥nop∥ ≤ m (Equation 8 in Figure 2).

Figures 6a and 6b illustrate the downside of using a fixed
noise-oblivious waterline (set by the maximum input scales
as in EVA). The resulting error is mostly dominated by a
large-noise operation like rotate. As listed in Table 1, three
RNS-CKKS operations introduce different amounts of noise,
and the others do not. The single fixed waterline may sub-
optimally limit the scales of the other operations that produce
small or no noises and thus have little impact on the errors.

On the other hand, Figure 6c demonstrates that the noise-
aware flexible waterline can enlarge the scale management
space, allowing better performance without sacrificing the
resulting error. Suppose in this example, SNR is 10; the noise
of encryption and rescale is 10; and the noise of rotate and
relinearize (ciphertext multiplication) is 1000. Then, the
waterline for rotate and ciphertext multiplication becomes

10 ·1000 = 10000, and the waterline for all the rest operations
is 10 · 10 = 100. The waterline for plaintext values is not
defined by noise, but it is set to the minimum waterline for the
other values. The waterline for rotate is also applied to its
operand (unlike ciphertext multiplications) because the scales
of the operand and result ciphertexts remain the same.

Figure 6c shows that the flexible waterline does not restrict
the scale of the ciphertexts including x, 0.1, and y which
have little impact on the scale. As a result, Figure 6c could
introduce only one rescale operation (compared to two in
the other cases (a) and (b)). The lower number of rescale
implies that one can use a smaller coefficient modulus Q=RL,
leading to lower latency (See §2.1 and Table 1). Compared
to Figure 6b, Figure 6c offers a better latency-error trade-off:
i.e., a lower latency at a similar error (0.01 vs. 0.01).

4.3 ELASM Compiler Design

This work proposes the ELASM compiler that supports
ELASM and the fine-grained noise-aware waterline with
its IR and type system. The ELASM IR and type system en-
force that each ciphertext type embeds the scale and rescaling
level information, and each RNS-CKKS operation respects
its SNR-based waterlines (Equation 8).

Figure 7 shows the design of the ELASM compiler. The
ELASM compiler translates an input FHE program written in
Python into the program with the ELASM IR. The scale man-
agement plan sampler (§5.1) samples a set of optimization
plan candidates, each of which specifies a different amount
of level reduction (e.g., using rescale) and scale increase
(e.g., using upscale). Given the SNR parameter, ELASM
calculates noise-aware waterlines for each FHE operation as

def program(x):
y = 0.1*x
y2 = y*y
y2r= rotate(y2,1)
return y2r

x
id :0

0.1
id :1

y
id :2

y2
id :3

y2r
id :4

Preprocess

Performance
Estimator (Existing)
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 𝑇 #
𝑚𝑢𝑙 (𝑝𝑙) 4 1 3
𝑚𝑢𝑙 (𝑐𝑖) 4 20 1
𝑢𝑝𝑠𝑐𝑎𝑙𝑒 4 1 1
𝑟𝑒𝑠𝑐𝑎𝑙𝑒 4 4 1
𝑟𝑒𝑠𝑐𝑎𝑙𝑒 3 2 1
𝑟𝑜𝑡𝑎𝑡𝑒 2 5 1
𝑇𝑜𝑡𝑎𝑙
L𝑎𝑡𝑒𝑛𝑐𝑦 35

Cost Function
𝑐𝑜𝑠𝑡 (35, 0.01) =

𝟑𝟏𝟓. 𝟔𝟔

Error Estimator (§5.3)

x

y

y2

r2
𝑛!"" : 2 B 10#$ 𝑥% : 0.01

n : 10 𝑚 : 10&
2 B 10#$ + ⁄10 10& ≈ 𝟐. 𝟐𝟒 B 𝟏𝟎#𝟒

y2r
𝑛!"" : 2.24 B 10#$ 𝑥% : 0.01

n : 10(𝑚 :10&
2.24 B 10#$ + ⁄10(10& = 𝟎. 𝟎𝟏

Error-Latency-Aware Scale Management (§5)

ELASM Compiler

Scale Management
Plan Sampler (§5.1)

Level: 0
Scale: 10 x

Level: 0
Scale: 1

Level: 2
Scale: 10

Level: 0
Scale: 1

0.1
y

Level: 0
Scale: 1

y2 y2r

Level: 0
Scale: 1

Scale Management
Code Generator(§6.3)

func program (%x)){
%c = const [0.1]
%y = mul %x, %c
%y2 = mul %y, %y
%up = upscale %y2
%r = rescale %up
%rs = rescale %r
%y2r= rotate %rs,1
return %y2r }

Waterline Manager (§5.2)
Op: Root
n: 10
SNR: 10
𝒎𝒐𝒑:100

Op: Mul (ci)
n : 1000
SNR: 10
𝒎𝒐𝒑: 𝟏𝟎𝟒

Type: Rotate
n: 1000
SNR: 10
𝒎𝒐𝒑: 𝟏𝟎𝟒

x

0.1 y

y2

y2r

Type: Mul (pl)
n: -
SNR: 10
𝒎𝒐𝒑:100

Plan = {0 : (0,10) , 1: (0,1),
0→2 : (0,1) , 1→2: (0,0),
2→3: (0,1), 3→4 : (2,10)}

Type: Root
n: -
SNR: 10
𝒎𝒐𝒑:100

𝜖!"" : 0 𝑥% : 1
n : 10 𝑚 : 10(

𝜖!"" ← 10 ∕ 10(= 𝟎. 𝟎𝟏

𝜖!"" : 0.01; 0 𝑥% : 1; 0.1
n : 0 𝑚 : 10&

𝜖!"" ← 0.01 B 0.1 = 𝟏𝟎#𝟑

𝜖!"" : 10#(; 10#(𝑥% ∶ 0.1; 0.1
n : 10(𝑚 : 10,-

2 " 10#(" 0.1 + 10(∕ 10,- ≈ 𝟐 B 𝟏𝟎#𝟒

Noise-aware Waterline Management (§5.2, 6)

Figure 7: Design of the ELASM compiler. The example code
and scale management plan are the same program and plan in
Figure 6c. mop means waterline for each operation.

a part of ELASM type system (§6.2). For each scale man-
agement plan, the scale management code generator (§6.3)
instruments scale management operations (e.g., rescale,
modswitch, upscale) to satisfy the RNS-CKKS constraints
including noise-aware waterlines (Figure 2) and generates
a legal RNS-CKKS program. For each generated program,
ELASM estimates its error (§5.3) and latency, and then com-

putes a user-defined error-latency cost function, which is it-
eratively fed back to the scale management plan sampler.
Besides, ELASM employs the scale management group gen-
eration optimization, latency estimation, and backend code
implementation of Hecate [45].

5 Error-Latency-Aware Scale Management

This section describes Error-Latency-Aware Scale Manage-
ment (ELASM) which actively manages the scale of cipher-
text with an upscale operation for error control. ELASM
consists of a sampling of the scale management space (§5.1),
a noise-aware waterline management and code generation
(§5.2), and an error estimation that enables fast iteration of
the exploration (§5.3).

5.1 Sampling of Scale Management Space
ELASM employs the Metropolis-Hastings algorithm [38], a
widely used Markov-Chain Monte-Carlo (MCMC) sampling
algorithm, to iteratively find a better error-latency trade-off
option for a given SNR parameter. The Metropolis-Hastings
algorithm starts from a plan P, and derives a new plan P∗

from P. The algorithm then decides whether to accept the
new plan or not, meaning that the next new plan is derived
from P∗ or P, respectively. The algorithm accepts the new
plan when U ≤ α(P∗|P), where U ∼ Uni f orm(0,1) and
α(P∗|P) = min(1,cost(P)/cost(P∗)). Hence, the cost func-
tion affects the error and latency of an optimized program.
ELASM allows a user to design the cost function (e.g.,
cost(P) = T ·E for latency T and error E of plan P).

Each sample in ELASM represents a scale management
plan that specifies the position of a scale management opera-
tion and the amount of scale increment and/or level decrement.
Consider the rotate(0.1x)2 program in Figure 7. A candidate
position of scale management operations includes the edges
between values (x, y), (0.1, y), (y, y2), and (y2, rotate(y2)).
In simple, the edge representation based on the group id is
(0→2), (1→2), (2→3), (3→4). The initial edge (null, x) is
also a target of a scale management plan, mimicking a change
on the scale of an encrypt operation. Then, a scale manage-
ment plan in ELASM can be represented as a map between
an edge (as a key) and a level-scale-change pair (as a value).
For instance, the plan in Figure 7 {(0 : (0,10); 1 : (0,1); 0 →
2 : (0,1); 1 → 2 : (0,1); 2 → 3 : (0,1); 3 → 4 : (2,10)} stands
for the plan that decreases the level by 2 and increases the
scale by 10 between y2 and rotate(y2) (i.e., before rotate).

To propose a new plan, ELASM randomly selects the target
positions, and changes the amount of level and scale.

5.2 Noise-aware Waterline Management
Inserting scale management operations as suggested by a scale
management plan is not sufficient to generate a legal program

Table 2: The estimated value and error of each FHE operation.
For operation names, the suffix ‘c’ means ciphertext and ‘p’
means plaintext: e.g., mulcp stands for a multiplication be-
tween ciphertext and plaintext. Unlisted operations preserve
the error and value. An operation operates on an encoded inte-
ger v = mx±n = m(x±ε) with scale m, value x, noise n, and
error ε. ∗ implies an estimated value. The addition of errors
means root-sum-square (∥ε0 ± ε1∥= (∥ε0∥2 ±∥ε1∥2)1/2).

Operation Est. Value Estimated Error
mulcc(v1,v2) x∗1x∗2 ε∗1x∗2 ± ε∗2x∗1 ± ε∗1ε∗2 ±nrelinearize/m
mulcp(v1,v2) x∗1x2 ε∗1x2
addcc(v1,v2) 1 ε∗1 ± ε∗2
addcp(v1,v2) 1 ε∗1
rotate(v) x∗ ε∗±nrotate/m
rescale(v) x∗ ε∗±nrescale/(m/R)
downscale(v) x∗ ε∗±nrescale/mw
upscale(v) x∗ ε∗

that obeys all the RNS-CKKS constraints in Figure 2. The
ELASM compiler uses a type system (which will be discussed
in §6.2) to enforce the RNS-CKKS constraints including the
proposed SNR-based noise-aware waterlines. This work also
defines a set of rewriting rules (§6.3) to generate an RNS-
CKKS constraint-compliant program.

For example, in Figure 7 where SNR is set to 10, ELASM
computes waterlines for each ciphertext based on the op-
eration type. For y2 and rotate(y2), the waterlines are set
to 10× 103 = 104. The waterlines for the others are set to
10×10 = 100. Then, ELASM inserts scale management op-
erations upscale and rescale. The generated program is
guaranteed to meet all the RNS-CKKS constraints based on
the ELASM’s type system. (§6.2)

5.3 Error Estimation

Given candidate programs, ELASM statically estimates their
error and latency to compare the cost instead of dynamically
running and measuring the actual metrics, which is very costly.
ELASM estimates a latency by simply accumulating the time
latency of each RNS-CKKS operation like previous work [45].
As listed in Table 1, the time complexity of an RNS-CKKS
operation depends on polynomial modulus N and the current
level l, which can be computed once a program is given.

On the other hand, estimating an absolute amount of error is
challenging because reasoning about an error of multiplication
between ciphertexts requires an unencrypted value, which is
not available. As illustrated in Figure 1, given two ciphertexts
v1 = m1(x1 ± ε1) and v2 = m2(x2 ± ε2) with scale m, value x,
and error ε, the resulting error after multiplication becomes
ε1x2 ± ε2x1 ± ε1ε2 ±nrelinearize/m, which includes the value-
related terms like ε1x2.

To address the problem, ELASM proposes a simple value
estimation-based approach that is sufficient to compare two

Prg ::= F
F ::= func fid (v : T){s;h}
S ::= ε |v := h |S;S
h ::= c |v |h+h |h×h | −h |rotate(h, i) |rescale(h)

|modswitch(h)|upscale(h, m) |downscale(h)

T ::= re |ci(m,d) | pl(m,d) |T → T
v : variable id, fid : function id, c ∈ constants
i, l ∈ Z+, m ∈ R+

Figure 8: The formal syntax of the ELASM IR. The syntax
with a gray box shows the scale management operations which
is not used by a programmer. A means a list of A.

different candidate programs, but may not be able to esti-
mate the absolute amount of an error. Table 2 summarizes
ELASM’s value and error estimation formulas for each FHE
operation. Using the formulas, ELASM estimates values
and errors by propagating the estimation results along their
data flow. For most operations, the error estimation does not
require an estimated value. On the other hand, for mulcc,
ELASM uses the estimated value to estimate an error. Since
estimating precise values is hard, this work postulates that
feeding the same estimated value at the same program point
across different candidate programs would be sufficient to rea-
son about the difference in errors. Based on the idea, ELASM
estimates the resulting value of an addition to be 1, the multi-
plicative identity that simplifies the error estimation on mulcc
and mulcp. The proposed approach attempts to precisely track
the impacts of multiplications, while giving up the precision
for additions. Resetting values to 1 also implies that ELASM
in effect analyzes FHE programs in a piece-wise manner.
Recall that the idea here is to enable comparison, not to esti-
mate a precise value. We later show that the proposed error
estimation is proportional to the actual resulting error in §7.2.

For example, in Figure 7 that computes rotate((0.1∗x)2),
ELASM estimates (assumes) the initial value of x is 1.
Note that the plaintext 0.1 does not need estimation. Then,
ELASM estimates y at 0.1 and y2 at 0.01, and propagates the
same estimated value to the rescale and rotate operations.
Along the program code, based on these estimated values,
ELASM computes the noises (and equivalently errors) us-
ing the method in Table 2, yielding the final error 0.01 (Note
that example error calculation uses simple addition instead of
root-sum-square for simplicity). If the scale management plan
is changed, the error will be also changed. Given two differ-
ent plans, the proposed error estimation is sufficient enough
to compare the impacts of scale management operations at
different places.

6 ELASM IR and Type System

This section describes the ELASM IR (§6.1), the ELASM
type system that enforces RNS-CKKS constraints including

the proposed noise-aware waterline (§6.2), and the ELASM
code generation component based on rewriting rules (§6.3).
Discussions on the formal operational semantics can be found
in Appendix A.3.

6.1 ELASM IR

Figure 8 shows the formal syntax of the ELASM IR (interme-
diate representation), which the ELASM compiler generates
and uses during optimization. The syntax with the gray box
represents the scale management operations that do not ap-
pear in the input program. The scale management algorithm
inserts the operations.

An ELASM program Prg consists of a list of functions
F which can be called by an external driver. A function is
composed of a list of statements S that ends with a return
expression. For a function body, ELASM only defines a list
of assignment statements v := e. An RNS-CKKS program
does not include branches such as if-else and for-loop [17].

ELASM requires specifying the type T for each function
argument v. Type T of a variable is a real vector (re), plain
(pl), or cipher (ci). The re type represents a raw message
that is not encrypted. The pl type represents an integer vector
that contains the encoded data for a raw message. The ci type
represents a ciphertext with scale m, and depth d properties.
The depth d represents the number of rescale, downscale
and modswitch operations applied to the ciphertext. The depth
is simply another way to reason about the rescaling level l
discussed in §2.2, which decreases from the initial level L
upon rescale, downscale and modswitch operations: i.e.,
d = L− l. Because the initial level L is selected by Equa-
tion 3, the exact L is unknown before compilation. Thus, the
ELASM compiler uses depth d (increasing from 0) instead
of level l (decreasing from L).

An FHE expression h could be constant, variable, binary ex-
pressions, negation and rotation. Binary expressions only con-
tain addition and multiplication. Subtraction is implemented
with negation, and division is implemented by multiplying
the inverse of the divisor. The rotate (h, i) operation only
takes a ciphertext h as its operand, and shifts vectored data in
the ciphertext by an offset i.

ELASM does not ask programmers to use low-level
scale management operations such as rescale, modswitch,
upscale, and downscale. The rescale (h) operation de-
creases the scale by the predefined rescaling factor R, and
increases the depth by one. The modswitch (h) operation
does not alter the scale but increases the depth by one. The
upscale (h,m) operation, syntactic sugar for multiplying one
with an arbitrary scale, increases the scale of h by m but does
not change the level. The downscale (h) operation, syntactic
sugar for applying upscale and rescale in sequence, re-
duces the scale to a waterline. Formal operational semantics
of the ELASM IR can be found in Appendix A.3.

Γ ⊢ h1 : ci(m,d) Γ ⊢ h2 : ci(m′,d) mm′ ≥ mrelinearize

Γ ⊢ h1 ×h2 : ci(mm′,d)
(MulCC)

Γ ⊢ h : ci(m,d) m ≥ mrotation

Γ ⊢ rotate(h, l) : ci(m,d)
(Rot)

Γ ⊢ h : ci(m,d) mrescale ≤ m ≤ mrescale ·R
Γ ⊢ downscale(h) : ci(mrescale,d +1)

(DS)

Γ ⊢ h : ci(m,d) m
R ≥ mrescale

Γ ⊢ rescale(h) : ci(m
R ,d +1)

(RS)

Figure 9: Parts of new typing rules of the ELASM IR. mrescale
means the minimal scale required by a rescale operation in
Equation 8 and mrotation means the minimal scale required by
a rotate operation.

Γ ⊢ h1 : ci(m,d) Γ ⊢ h2 : re

h1 ×h2
rewrite−−−−→ h1 ×upscale(h2,mrescale)

(EncodeMul)

Γ ⊢ e : ci(m,d) m < mrotation

rotate(e, i) rewrite−−−−→ rotate(upscale(e,mrotation/m), i)
(URot)

Figure 10: Parts of rewriting rules for scale management
code generation. mrescale means the minimal scale required
by a rescale operation by Equation 8, and mrotation means the
minimal scale required by a rotate operation.

6.2 Type System for Waterline Management
Figure 9 shows a subset of the ELASM typing rules that
presents the waterline constraints. The full typing rules can
be found in Appendix A.1. The type system is designed to sat-
isfy/enforce the RNS-CKKS constraints in Figure 2 including
the SNR-based noise-aware waterlines described in §4.2. The
type soundness of ELASM IR guarantees that a well-typed
program does not violate the RNS-CKKS constraints.

The ELASM type system reflects the SNR constraint.
Notably, four rules such as Equations MulCC, Rot, DS and
RS require some minimal scales (waterlines): mrelinearize for
ciphertext multiplication, mrotation for rotate, and mrescale
for rescale and downscale. The mrelinearize waterline is
easily satisfied as a ciphertext multiplication increases the
scale by itself. On the other hand, to satisfy the SNR-based
noise-aware waterline constraint in Equation 8, the waterlines
mrotation and mrescale should be defined as ∥nrotate∥ ·SNR and
∥nrescale∥ · SNR for a given SNR. From Table 1, ∥nrotate∥ is
8
√

3
3 σlN + 8

√
2

3 N +
√

3N and ∥nrescale∥ is 8
√

2
3 N +

√
3N. Be-

cause ∥nrotate∥ is affected by the level of ciphertext that is
unknown before the scale management, ELASM uses the
worst-case value.

6.3 Scale Management Code Generation
Given a program that is potentially illegal without all the nec-
essary scale management operations, ELASM generates a
well-typed program for a given SNR parameter that meets all

the RNS-CKKS constraints. For this purpose, ELASM de-
fines a set of code rewriting rules that add scale management
operations such as downscale, upscale and rescale.

ELASM introduces the new rewriting rules (partly on Fig-
ure 10) that rewrite the expression to meet the required condi-
tions of the typing rules (Figure 9). The full rewriting rules for
ELASM can be found in Figure 17. Notably, Equation URot,
the newly proposed rule for rotation, inserts upscale if the
operand’s scale is less than the noise-aware waterline for ro-
tation (mrotation) to satisfy the typing rule Equation Rot in
Figure 9. Equation EncodeMul also inserts upscale for the
casting, but the encoding scale is different from the rotation.
For the multiplication, the encoding scale is the same as the
waterline of rescale mrescale, because the scale of all input
data for a program is set to mrescale.

After the scale management code generation is finished and
the generated code is selected for the optimal program, the
program is translated to LLVM IR which calls the FHE library
functions. We use Microsoft SEAL [51] which implements
the RNS-CKKS scheme as a backend.

7 Evaluation

This work compares ELASM with the state-of-the-art FHE
compilers such as EVA [26] and Hecate [45] to evaluate the
benefits of the proposed error-latency aware scale manage-
ment and the noise-aware waterlines. For the benchmarks,
we implemented and tested the seven machine learning and
deep learning applications listed in Figure 11k. The bench-
mark sets are the same as those used in Hecate except for
newly added multivariate regression (MR) for epoch 2 and
3. The benchmark sets also include the benchmark sets of
EVA except SqueezeNet. The image processing benchmarks
(SF, HCD) use 4096 pixels of 64 × 64 images, the regression
benchmarks use 16384 randomly generated inputs for each
variable, and the deep learning benchmarks use a random
input from MNIST dataset. This work uses the gradient de-
scent algorithm for the regression benchmarks with 2 and 3
epochs. Note that the regression benchmarks perform train-
ing workload that calculates the corresponding function and
deep learning benchmarks perform inference workload. The
benchmarks assume a packed ciphertext with 16384 slots.

This evaluation uses Microsoft SEAL [51] (Release 3.5.9)
for RNS-CKKS backend library and runs experiments on
Intel(R) Core(TM) i7-8700 @ 3.20GHz with 64GB RAM.
All of the results are the measured values from the real ex-
ecution, not from the estimation. For ELASM, EVA, and
Hecate, the same RNS-CKKS settings are used. The rescal-
ing factor R = 260 and polynomial modulus N = 215. This
work sets the security level as 128-bit for all the experiments.
ELASM explores 12000 scale management plan samples
with 12 parallel threads. ELASM samples the level decre-
ment ldec ∼ U[0,2] and scale increment minc = ReLU(X) for
X ∼U[−10,10] where U[a,b] is a uniform distribution over [a,b].

The number of the newly sampled position for a new plan is√
of candidate positions. We use

√
T · (60+ log2 E) as the

cost function of ELASM. The cost function adjusts the ef-
fect of compilation parameter (SNR) on latency T (quadratic)
and result error E(inversely exponential). Therefore, we apply
square root to T and logarithm to E and then multiply them.
Note that we add 60 to log2 E to make the value always posi-
tive. In addition, the maximum compilation time of ELASM
is 312 seconds from LeNet-5 and the others are smaller than
15 seconds on parallel implementation with 12 threads.

7.1 Pareto Curve of Error-Latency Trade-off
Figure 11 shows Pareto-optimal error and latency trade-off
options for all the benchmarks. This work uses the compi-
lation parameter (the waterline in EVA and Hecate, and the
waterline of rescale derived from SNR in ELASM) from
215 to 250. SF, MR E2 (epoch 2), MR E3 (epoch 3), and MLP
clearly show that their Pareto curves are shifted to the left,
which means the error for a given latency is reduced. LR E2,
LR E3, PR E2 and PR E3 show that their Pareto curves are
shifted to the left-and-downward, which means that ELASM
improves both the latency and error at the same time. For the
other benchmarks (HCD and Lenet), the shapes of curves are
not similar enough to compare how their curves are shifted,
but the Pareto curves show better performance and error in
general. EVA and Hecate finds a slightly better performance
and error trade-off point in MR E2 and Lenet, respectively.
ELASM expects better error for its scale management plan
but the imprecise error estimation results in an inoptimal scale
management plan. To quantify the improvement of the pareto
curve of error-latency trade-off, we plot the best error and
latency for a given constraint shown in red lines in Figure 11.
Here, as the constraint points, we selected average error and
latency values among explored results.

Figure 12 shows the error and latency comparison among
EVA, Hecate, and ELASM. ELASM focuses on both error
and latency, so the improvement can be observed in both di-
mensions. Figure 12a shows that given the same latency for
each application, on average, ELASM has 5.7 bits (51.2×)
and 4.2 bits (18.1×) smaller errors than EVA and Hecate, re-
spectively. Unlike the prior works, ELASM actively manages
the scale of ciphertext to control the error. On the other hand,
Figure 12b shows that at the same error for each application,
ELASM is on average 24.9% and 16.7% faster than EVA and
Hecate, respectively. The scale management search space of
ELASM is larger than that of Hecate thanks to the proposed
noise-aware waterlines. ELASM successfully finds a better
scale management plan with lower latency than Hecate.

7.2 Error Estimation
This work evaluates the precision of the error estimation used
in ELASM. As discussed in §5.3, ELASM does not aim to

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-11 -6 -1 4

EVA Hecate ELASMLatency(s)

Err(log10)

(a) SF

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-9 -7 -5 -3 -1 1

EVA Hecate ELASMLatency(s)

Err(log10)

(b) HCD

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

-11 -10 -9 -8 -7 -6 -5

EVA Hecate ELASMLatency(s)

Err(log10)

(c) LR E2

1

1.5

2

2.5

3

3.5

4

-14 -12 -10 -8 -6 -4

EVA Hecate ELASMLatency(s)

Err(log10)

(d) PR E2

2

2.5

3

3.5

4

4.5

5

5.5

-9.5 -7.5 -5.5 -3.5 -1.5

EVA Hecate ELASMLatency(s)

Err(log10)

(e) MR E2

0.7

1.2

1.7

2.2

2.7

-10 -8 -6 -4 -2 0

EVA Hecate ELASMLatency(s)

Err(log10)

(f) LR E3

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

-9 -7 -5 -3

EVA Hecate ELASMLatency(s)

Err(log10)

(g) PR E3

4

6

8

10

12

14

16

18

20

-12 -10 -8 -6 -4

EVA Hecate ELASMLatency(s)

Err(log10)

(h) MR E3

2

3

4

5

6

7

8

-9.5 -7.5 -5.5 -3.5 -1.5

EVA Hecate ELASMLatency(s)

Err(log10)

(i) MLP

20

30

40

50

60

70

80

90

-6 -5 -4 -3 -2

EVA Hecate ELASMLatency(s)

Err(log10)

(j) Lenet

Name Description
Sobel filter (SF) A classic edge detection algorithm
Harris corner detection(HCD) A classic corner detection algorithm
Linear regression (LR) Fitting a linear equation
Polynomial regression (PR) Fitting a quadratic equation
Multivariate regression (MR) Fitting a multiple linear equation

Multi-layer perceptron (MLP)
A feed-forward neural network for image
classification with 784×100 and 100×10 layer and
square activation

LeNet-5 (Lenet) A convolutional neural network for image
classification presented in [43] with square activation

(k) Benchmark program description

Figure 11: Pareto-frontier of error-latency trade-offs (a-j) of the tested FHE benchmark programs (k). E2 and E3 stands for two
and three epoch of the gradient descent algorithm in regression benchmarks. The red line shows the representative values among
the trade-off options. We select the representative values from the average on the usable ranges of error and latency.

estimate the absolute amount of errors for a given program.
Instead, the error estimation method of ELASM strives to
produce an error-proportional estimation on which the cost
functions of different scale management plans can be com-
puted and compared. Thus, the precision metric on the error
estimation becomes how much the estimated errors are pro-
portional to measured errors.

Figure 13 shows the R2 value of the linear fitting between
the estimated and measured errors. ELASM’s error estima-
tion method shows a high R2 value of 0.948 on average,
implying that the proposed error estimation is proportional
enough to be used to compare different scale management
plans. Lenet shows the least R2 value of 0.884 because the
simple value estimation is not precise, and the delta between
the assumed values and the exact values becomes amplified
as a result of multiple stages of multiplication and addition.

7.3 Error-proportionality of SNR parameter
This section evaluates how much the compiler parameter used
in EVA, Hecate, and ELASM is proportional to the resulting
error. An error-proportional compiler parameter enables users
easily to explore different error-latency trade-offs. Given one
parameter and corresponding error-latency along the Pareto-
curve, users can reason about how the error-latency trade-off
would change when increasing or decreasing the parameter.
Therefore, users do not need to explore all the parameters.

Figure 14 shows R2 of linear fitting between the parameter
and output error that represents the relation between the er-
ror and the compile parameter for each application. Because
EVA, Hecate, and ELASM use their parameters with different
semantics, we place the parameters on the same x-axis if their
upper bound of the operation-wise error is the same.

Overall, ELASM shows much better error-proportionality
than EVA which appears to be ineffective in controlling the er-
rors. EVA shows a very low proportionality in PR E3 because
its inefficient scale management and the large multiplication

Err(log10)

-18

-15

-12

-9

-6

-3

0

3

SF HCD LR E2 PR E2 MR E2 LR E3 PR E3 MR E3 MLP Lenet Avg

EVA Hecate ELASM

(a) Best error for a given latency (Lower is better)

Latency(Normalized by Hecate)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SF HCD LR E2 PR E2 MR E2 LR E3 PR E3 MR E3 MLP Lenet Avg

EVA Hecate ELASM

(b) Best latency for a given error (Lower is better)

Figure 12: Error and latency for a given constraint. The constraints are plotted on Figure 11.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SF HCD LR E2 PR E2 MR E2 LR E3 PR E3 MR E3 MLP Lenet Total

R2

Figure 13: R2 of linear fitting between estimated error and
measured error

𝑅2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SF HCD LR E2 PR E2 MR E2 LR E3 PR E3 MR E3 MLP Lenet Total

EVA Hecate ELASM

Figure 14: R2 of linear fitting between parameter and error

depth of PR E3 requires large coefficient moduli for some
parameter values that are infeasible.

Interestingly, in PR E3, EVA shows (not significant yet)
higher R2 value than ELASM. Note that ELASM aims to
optimize the cost function that incorporates both the latency
and the error. As a result, ELASM may choose a scale man-
agement plan in which an error is higher but the error-latency
cost function is smaller, leading to some minor fluctuation.

Nonetheless, Figure 14 shows that ELASM’s R2 values are
consistently high across all the applications with the minimum
R2 of 0.948 as well as the mean R2 values of 0.986.

7.4 Case Study: End-to-end DNN Application

We prototype the end-to-end image classification inference
scenario with LeNet-5. The client encrypts the image from
MNIST evaluation dataset and sends it to the server. The
server processes the encrypted image with LeNet-5 and sends
it back to the client. Finally, the client decrypts the image
and checks the correctness. The network bandwidth between
the client and server is 1Gbps. The client and server have the
same configuration of evaluation setup.

Figure 15a shows the end-to-end latency results. EVA does
not consider the latency during scale management, so there
does not exist a consistent correlation between its parameter
and latency. On the other hand, Hecate and ELASM reflect
the latency estimation in scale management and show mono-
tonic relation between their parameters and latency.

Figure 15b shows the inference accuracy of the existing
works and ELASM. The figure shows the existence of thresh-
old that significantly increases the accuracy, supported by
Figure 4. Notably, as Hecate aggressively optimizes for la-
tency while ignoring error, it leads to an unpredictable ac-
curacy drop on waterline 215. On the other hand, ELASM
applies the error estimation to scale management and shows
monotonic relation between parameter and accuracy.

In overall, EVA and Hecate cannot support efficient ex-
ploration between accuracy and latency. On the other hand,
ELASM shows monotonic relation both on accuracy and
latency, showing the effectiveness of the error-proportional
parameter. Furthermore, for the similar error level, ELASM
shows the smallest end-to-end latency. As a result, a user can
easily explore the most efficient accuracy-latency trade-off
with ELASM.

7.5 Discussion: Larger Applications

The benchmark suite does not include larger applications
like ResNet-20, because SEAL library does not support boot-
strap operation which allows for restoring the ciphertext level.

0

10

20

30

40

50

60

70

EVA Hecate ELASM

Latency(s)

12 13 14 15 1612 13 14 15 1612 13 14 15 16

(a) Latency for a given parameter (Lower is better)

0

20

40

60

80

100

EVA Hecate ELASM

Accuracy(%)

12 13 14 15 1612 13 14 15 1612 13 14 15 16

(b) Accuracy for a given parameter (Higher is better)

Figure 15: End-to-end inference case study with LeNet-5. Latency includes network and encryption/decryption latency. Accuracy
is calculated with a subset of MNIST evaluation dataset.

ELASM can support the larger application with another FHE
library that supports the bootstrap operation. When other li-
braries that support bootstrapping are used, one can partition
the program across bootstrapping, apply ELASM’s perfor-
mance and error-aware scale management ideas to subpro-
grams, and recombine them.

8 Related Work

To improve the performance and programmability of HE ap-
plications, prior works [5–7, 13, 18, 24–27, 52, 54] proposed
various languages and optimizing compilers for HE. In [53],
the survey of FHE compilers and libraries provides an exten-
sive survey and experimental evaluation. Typically, the exist-
ing compilers and languages automate encryption parameter
selection or conceal the complexity of the HE scheme be-
hind a high-level language. In addition, the compilers present
various optimization techniques for HE applications.

General-purpose HE compilers: Several works [5, 12,
18, 20, 24–26, 44, 54] propose new programming languages or
the implementation of general-purpose HE applications for
existing programming languages.

The HE compilers [5, 12, 18, 20, 25, 44, 54] for existing
programming languages ease the implementation of FHE
applications. Cingulata [12, 20], E3 [18] and Marble [54]
provide open source compiler and runtime supports for run-
ning C++ programs with encrypted data. Lobster [44] is an
optimizing compiler for Cingulata and it performs term rewrit-
ing and program synthesis on boolean circuits generated by
Cingulata to optimize the program. RAMPARTS [5] provides
an environment for developing HE applications in Julia, and
automatically converts an imperative program into an opti-
mized computation circuit for HE by using PALISADE [49]
library. ALCHEMY [25] supports the Haskell front-end and
automatically selects the appropriate parameters. In addition,
Porcupine [24] proposes HE DSL named Quill for data lay-
out optimization in FHE using program synthesis. However,
the compilers only support non-CKKS schemes [10, 19, 30]
instead of the CKKS and RNS-CKKS schemes which can
support fixed-point arithmetic.

Recently proposed compilers [26, 45] support the CKKS
and RNS-CKKS schemes. Encrypted Vector Arithmetic
(EVA) [26] introduces a new language for FHE computa-
tion, which is designed to be an intermediate representation
of other domain-specific languages. EVA supports arithmetic
operations on fixed-width vectors and facilitates encrypted
SIMD computations. Moreover, the EVA compiler automat-
ically manages scales of fixed point ciphertexts. Assuming
that the program latency is proportional to the output scale, its
scale management scheme optimizes the output scales. On the
other hand, Hecate [45] addresses that the minimal scale does
not minimize latency, and introduces a new scale management
space exploration that optimizes latency of the program. With
a proactive rescaling algorithm, Hecate directly optimizes
latency with performance estimation.

This work discovers two limitations in EVA and Hecate
in terms of scale management: an absence of error-aware
scale management and a single-fixed fixed-waterline without
considering FHE operation noises. With a new error- and
latency-aware scale management scheme and a new error-
proportional parameter, ELASM framework provides better
error and latency results than EVA and Hecate.

Domain-specific HE compilers: Other works [6, 7, 13, 27]
support CKKS schemes, but their applications are limited to
specific domains like DNN inference

CHET [27] is an optimized compiler for encrypted DNN
inference. CHET provides a domain-specific language and
transforms an input tensor circuit into a sequence of FHE
operations. CHET also automates parameter selection. More-
over, CHET provides layout selection and other HE-specific
optimizations to improve the latency of the HE program.

nGraph-HE [6, 7] extends Intel’s nGraph [48], an existing
deep learning graph compiler, to enable encrypted deep learn-
ing. The compiler implements the HE backend for nGraph
to deploy neural network models with popular deep learn-
ing frameworks like TensorFlow [1]. The compilers apply
various HE-specific optimizations including data layout opti-
mization. Furthermore, nGraph-HE provides lazy rescaling
and it inserts rescale operation only after linear layers.

AHEC [13] supports nGraph and Tensorflow as front-end

and SEAL (RNS-CKKS) as back-end with supporting multi-
ple hardware back-end through GPU-accelerated HE library.
AHEC enables the automated generation and optimization
of HE kernels through vectorization, tiling, and tensor layout
selection. To exploit parallelism, AHEC provides Tile DSL
that describes the HE kernel and hardware abstraction layer.

ELASM’s scale management scheme can be applied to
existing domain-specific compilers, so the compiler can use
ELASM’s error-aware scale management to further improve
the performance of the target application.

9 Conclusion

This work proposes a new error- and latency-aware scale
management (ELASM) for RNS-CKKS fully homomorphic
encryption. ELASM explores different scale management
plans, efficiently estimates the output error and latency of
each plan, and iteratively finds the best plan with the least
estimated error and latency. ELASM introduces a new error-
proportional parameter called scale-to-noise ratio (SNR) and
supports the new fine-grained noise-aware waterlines, thus
enlarging scale management exploration space. The proposed
ideas are implemented in the ELASM compiler along with
the noise-aware ELASM IR and type system. This work eval-
uates ELASM with ten machine learning and deep learning
benchmarks and demonstrates that ELASM offers better la-
tency and error trade-offs than the state-of-the-art RNS-CKKS
compilers such as EVA and Hecate.

Acknowledgments

We thank the anonymous reviewers for their valuable feed-
back. We also thank the CoreLab members for their support
and feedback during this work. This work is supported by
IITP-2020-0-01847, IITP-2020-0-01361, IITP-2021-0-00853
and IITP-2022-11-2032 funded by the Ministry of Science
and ICT. This work is in part supported by the National Sci-
ence Foundation under Grant No. CCF-2153747 and CNS-
2135157. This work is also supported by CryptoLab. (Corre-
sponding author: Hanjun Kim)

Availability

The source code of ELASM compiler will be publicly avail-
able on https://github.com/corelab-src/elasm.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,

Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), Savannah, GA, November 2016. USENIX Associa-
tion.

[2] Abbas Acar, Hidayet Aksu, A. Selcuk Uluagac, and
Mauro Conti. A survey on homomorphic encryption
schemes: Theory and implementation. ACM Comput.
Surv., 51(4), July 2018.

[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding,
Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jef-
frey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison,
Amit Sahai, and Vinod Vaikuntanathan. Homomor-
phic encryption security standard. Technical report, Ho-
momorphicEncryption.org, Toronto, Canada, November
2018.

[4] David Archer, Lily Chen, Jung Hee Cheon, Ran Gilad-
Bachrach, Roger A Hallman, Zhicong Huang, Xiaoqian
Jiang, Ranjit Kumaresan, Bradley A Malin, Heidi Sofia,
et al. Applications of homomorphic encryption. Ho-
momorphicEncryption. org, Redmond WA, Tech. Rep.,
2017.

[5] David W. Archer, José Manuel Calderón Trilla, Jason
Dagit, Alex Malozemoff, Yuriy Polyakov, Kurt Rohloff,
and Gerard Ryan. RAMPARTS: A Programmer-
Friendly System for Building Homomorphic Encryp-
tion Applications. In Proceedings of the 7th ACM Work-
shop on Encrypted Computing & Applied Homomorphic
Cryptography. ACM, 2019.

[6] Fabian Boemer, Anamaria Costache, Rosario Cam-
marota, and Casimir Wierzynski. nGraph-HE2: A High-
Throughput Framework for Neural Network Inference
on Encrypted Data. In Proceedings of the 7th ACM
Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography. ACM, 2019.

[7] Fabian Boemer, Yixing Lao, Rosario Cammarota, and
Casimir Wierzynski. nGraph-HE: A Graph Compiler for
Deep Learning on Homomorphically Encrypted Data. In
Proceedings of the 16th ACM International Conference
on Computing Frontiers. ACM, 2019.

[8] Zvika Brakerski. Fully homomorphic encryption with-
out modulus switching from classical gapsvp. In Annual
Cryptology Conference. Springer, 2012.

[9] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed
Ciphertexts in LWE-Based Homomorphic Encryption.
In Kaoru Kurosawa and Goichiro Hanaoka, editors,
Public-Key Cryptography - PKC 2013. Springer, 2013.

https://github.com/corelab-src/elasm

[10] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (leveled) fully homomorphic encryption with-
out bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, New York,
NY, USA, 2012. ACM.

[11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient
fully homomorphic encryption from (standard) lwe.
SIAM Journal on Computing, 43(2), 2014.

[12] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Ar-
madillo: a compilation chain for privacy preserving ap-
plications. In Proceedings of the 3rd International Work-
shop on Security in Cloud Computing, 2015.

[13] Huili Chen, Rosario Cammarota, Felipe Valencia,
Francesco Regazzoni, and Farinaz Koushanfar. Ahec:
End-to-end compiler framework for privacy-preserving
machine learning acceleration. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), 2020.

[14] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim,
Moon Sung Lee, Tancrede Lepoint, Mehdi Tibouchi,
and Aaram Yun. Batch fully homomorphic encryption
over the integers. In Annual International Conference
on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2013.

[15] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Mi-
ran Kim, and Yongsoo Song. A full rns variant of ap-
proximate homomorphic encryption. In Carlos Cid and
Michael J. Jacobson Jr., editors, Selected Areas in Cryp-
tography – SAC 2018, Cham, 2018. Springer.

[16] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong-
soo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017, Cham, 2017. Springer.

[17] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim,
Hun Hee Lee, and Keewoo Lee. Numerical method for
comparison on homomorphically encrypted numbers.
In Steven D. Galbraith and Shiho Moriai, editors, Ad-
vances in Cryptology – ASIACRYPT 2019, Cham, 2019.
Springer.

[18] Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektar-
ios Georgios Tsoutsos, and Michail Maniatakos. E3: A
framework for compiling c++ programs with encrypted
operands. Cryptology ePrint Archive, Report 2018/1013,
2018. https://ia.cr/2018/1013.

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and
Malika Izabachène. Tfhe: Fast fully homomorphic en-
cryption over the torus. Journal of Cryptology, 33(1),
2020.

[20] Cingulata. https://github.com/CEA-LIST/
Cingulata, 2020.

[21] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi
Tibouchi. Scale-invariant fully homomorphic encryption
over the integers. In International Workshop on Public
Key Cryptography. Springer, 2014.

[22] Jean-Sébastien Coron, Avradip Mandal, David Nac-
cache, and Mehdi Tibouchi. Fully homomorphic en-
cryption over the integers with shorter public keys. In
Advances in Cryptology – CRYPTO 2011, volume 6841,
08 2011.

[23] Jean-Sébastien Coron, David Naccache, and Mehdi Ti-
bouchi. Public key compression and modulus switching
for fully homomorphic encryption over the integers. In
Advances in Cryptology – EUROCRYPT 2012, 04 2012.

[24] Meghan Cowan, Deeksha Dangwal, Armin Alaghi, Car-
oline Trippel, Vincent T. Lee, and Brandon Reagen. Por-
cupine: A synthesizing compiler for vectorized homo-
morphic encryption. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation. ACM, 2021.

[25] Eric Crockett, Chris Peikert, and Chad Sharp. Alchemy:
A language and compiler for homomorphic encryption
made easy. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security.
ACM, 2018.

[26] Roshan Dathathri, Blagovesta Kostova, Olli Saarikivi,
Wei Dai, Kim Laine, and Madan Musuvathi. EVA: An
encrypted vector arithmetic language and compiler for
efficient homomorphic computation. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2020.

[27] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine,
Kristin Lauter, Saeed Maleki, Madanlal Musuvathi, and
Todd Mytkowicz. CHET: An Optimizing Compiler for
Fully-homomorphic Neural-network Inferencing. In
Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation.
ACM, 2019.

[28] Li Deng. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6), 2012.

[29] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine,
Kristin Lauter, Michael Naehrig, and John Wernsing.
Manual for using homomorphic encryption for bioinfor-
matics. Technical Report MSR-TR-2015-87, November
2015.

https://ia.cr/2018/1013
https://github.com/CEA-LIST/Cingulata
https://github.com/CEA-LIST/Cingulata

[30] Junfeng Fan and Frederik Vercauteren. Somewhat
practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. https://
eprint.iacr.org/2012/144.

[31] FullRNS-HEAAN. https://github.com/
KyoohyungHan/FullRNS-HEAAN, 2018.

[32] Craig Gentry. A Fully Homomorphic Encryption
Scheme. PhD thesis, Stanford, CA, USA, 2009.

[33] Craig Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, New York,
NY, USA, 2009. ACM.

[34] Craig Gentry and Shai Halevi. Implementing gentry’s
fully-homomorphic encryption scheme. volume 6632,
05 2011.

[35] Craig Gentry, Shai Halevi, and Nigel P Smart. Better
bootstrapping in fully homomorphic encryption. In
International Workshop on Public Key Cryptography.
Springer, 2012.

[36] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully
homomorphic encryption with polylog overhead. In
Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques. Springer, 2012.

[37] Craig Gentry, Amit Sahai, and Brent Waters. Homomor-
phic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In An-
nual Cryptology Conference. Springer, 2013.

[38] W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. 57(1).

[39] HElib Open-Source HE Library. https:
//github.com/homenc/HElib, 2020.

[40] Andrey Kim, Antonis Papadimitriou, and Yuriy
Polyakov. Approximate homomorphic encryption with
reduced approximation error. IACR Cryptol. ePrint
Arch., 2020, 2020.

[41] Övünç Kocabaş and Tolga Soyata. Medical data ana-
lytics in the cloud using homomorphic encryption. In
E-Health and Telemedicine: Concepts, Methodologies,
Tools, and Applications. IGI Global, 2016.

[42] Ovunc Kocabas, Tolga Soyata, Jean-Philippe Couderc,
Mehmet Aktas, Jean Xia, and Michael Huang. Assess-
ment of cloud-based health monitoring using homomor-
phic encryption. In 2013 IEEE 31st International Con-
ference on Computer Design (ICCD), 2013.

[43] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 1998.

[44] DongKwon Lee, Woosuk Lee, Hakjoo Oh, and
Kwangkeun Yi. Optimizing homomorphic evaluation
circuits by program synthesis and term rewriting. In
Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation,
New York, NY, USA, 2020. ACM.

[45] Yongwoo Lee, Seonyeong Heo, Seonyoung Cheon, Shin-
nung Jeong, Changsu Kim, Eunkyung Kim, Dongyoon
Lee, and Hanjung Kim. HECATE: Performance-Aware
Scale Optimization for Homomoprhic Encryption Com-
piler. In 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2022.

[46] Vadim Lyubashevsky, Chris Peikert, and Oded Regev.
On ideal lattices and learning with errors over rings. In
Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, Berlin, Heidelberg, 2010. Springer.

[47] Oliver Masters, Hamish Hunt, Enrico Steffinlongo, Jack
Crawford, Flavio Bergamaschi, Maria Eugenia Dela
Rosa, Caio Cesar Quini, Camila T Alves, Fernanda
de Souza, and Deise Goncalves Ferreira. Towards a
homomorphic machine learning big data pipeline for
the financial services sector. IACR Cryptol. ePrint Arch.,
2019, 2019.

[48] nGraph Deep Learning Compiler. https://
www.ngraph.ai, 2020.

[49] PALISADE Lattice Cryptography Library. https://
palisade-crypto.org/, October 2020.

[50] Jim Salter. Ibm completes successful field
trials on fully homomorphic encryption.
https://arstechnica.com/gadgets/2020/07/
ibm-completes-successful-field-trials-on-
fully-homomorphic-encryption/, July 2020.

[51] Microsoft SEAL (Release 3.5.9). https:
//github.com/microsoft/SEAL, 2020.

[52] Tim van Elsloo, Giorgio Patrini, and Hamish Ivey-Law.
Sealion: a framework for neural network inference on
encrypted data, 2019.

[53] Alexander Viand, Patrick Jattke, and Anwar Hithnawi.
Sok: Fully homomorphic encryption compilers. In 2021
2021 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, may 2021.

[54] Alexander Viand and Hossein Shafagh. Marble: Making
fully homomorphic encryption accessible to all. In Pro-
ceedings of the 6th Workshop on Encrypted Computing;
Applied Homomorphic Cryptography. ACM, 2018.

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://github.com/KyoohyungHan/FullRNS-HEAAN
https://github.com/KyoohyungHan/FullRNS-HEAAN
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://www.ngraph.ai
https://www.ngraph.ai
https://palisade-crypto.org/
https://palisade-crypto.org/
https://arstechnica.com/gadgets/2020/07/ibm-completes-successful-field-trials-on-fully-homomorphic-encryption/
https://arstechnica.com/gadgets/2020/07/ibm-completes-successful-field-trials-on-fully-homomorphic-encryption/
https://arstechnica.com/gadgets/2020/07/ibm-completes-successful-field-trials-on-fully-homomorphic-encryption/
https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL

Γ ⊢ e : T
Γ ⊢ v := e : Γ,v : T

(Asn)
Γ ⊢ s : Γ′ Γ′ ⊢ s′ : Γ′′

Γ ⊢ s;s′ : Γ′′ (Stm)
Γ,v : T ⊢ s : Γ′ T ∈ {re,ci(m,0)} Γ′ ⊢ e : U

Γ ⊢ funcfid (v : T){s;e} : T →U
(Fun)

Γ ⊢ c : re
(Const)

Γ ⊢ h : re
Γ ⊢ −h : re

(NegR)
Γ ⊢ h : ci(m,d)

Γ ⊢ −h : ci(m,d)
(NegC)

Γ ⊢ h1 : re Γ ⊢ h2 : re
Γ ⊢ h1 ⊕h2 : re

(BinR)

Γ ⊢ h1 : ci(m,d) Γ ⊢ h2 : sc(m,d)
Γ ⊢ h1 +h2 : ci(m,d)

(Add)
Γ ⊢ h1 : ci(m,d) Γ ⊢ h2 : pl(m′,d)

Γ ⊢ h1 ×h2 : ci(mm′,d)
(MulCP)

Γ ⊢ h1 : ci(m,d) Γ ⊢ h2 : ci(m′,d) mm′ ≥ mrelinearize

Γ ⊢ h1 ×h2 : ci(mm′,d)
(MulCC)

Γ ⊢ h : ci(m,d) m ≥ mrotation

Γ ⊢ rotate(h, l) : ci(m,d)
(Rot)

Γ ⊢ h : ci(m,d) mrescale ≤ m ≤ mrescale ·R
Γ ⊢ downscale(h) : ci(mrescale,d +1)

(DS)
Γ ⊢ h : ci(m,d) m

R ≥ mrescale

Γ ⊢ rescale(h) : ci(m
R ,d +1)

(RS)

Γ ⊢ h : sc(m,d)
Γ ⊢ modswitch(h) : sc(m,d +1)

(MS)
Γ ⊢ h : re

Γ ⊢ upscale(h,m) : pl(m,0)
(USR)

Γ ⊢ h : ci(m,d) m′ ≥ m
Γ ⊢ upscale(h,m′) : ci(m′,d)

(USC)

Figure 16: Typing rules of the ELASM IR. mrescale means the minimal scale required by a rescale operation in Equation 8 and
mrotation means the minimal scale required by a rotate operation. sc includes ci and pl types, and ⊕ includes +,×.

Appendix A ELASM IR and Type System

A.1 Type Systems of ELASM
Figure 16 shows the typing rules of the ELASM IR. The
type system is designed to satisfy/enforce the RNS-CKKS
constraints in Figure 2 including the SNR-based noise-aware
waterlines described in §4.2. The type soundness of ELASM
IR guarantees that a well-typed program does not violate the
RNS-CKKS constraints.

The ELASM type system reflects the SNR constraint.
Notably, three rules such as Equation MulCC, Equation Rot,
and Equation RS require some minimal scales (waterlines):
mrelinearize for ciphertext multiplication, mrotation for rotate,
and mrescale for rescale. The first mrelinearize waterline is
easily satisfied as a ciphertext multiplication increases the
scale by itself. On the other hand, to satisfy the SNR-based
noise-aware waterline constraint in Equation 8, the waterlines
mrotation and mrescale should be defined as nrotate · SNR and
nrescale ·SNR for a given SNR and the noises of rotate and
rescale operations, respectively. Because nrotate is affected
by the level of ciphertext that is unknown before the rescaling,
ELASM uses the worst-case value.

A.2 Rewriting Rules of ELASM
The rewriting rules (Figure 10) rewrite the expression to meet
the required conditions of the typing rules (Figure 9). Equa-
tion DScale inserts downscale for both operands when it is
better than multiplication and then rescale. Equation DMatch
and Equation LMatch insert downscale and modswitch to
match the level of operands of binary operations for satisfy-
ing typing rules Equations Add to MulCC, respectively. Equa-
tion SMatch inserts upscale to match the scale of operands
of binary operations for satisfying a typing rule Equation Add.
Equation EncodeAdd inserts upscale to cast re type operand

to pl type value, because Equation Add does not allow re type
operand. Moreover, the encoding scale is set to the scale of
another operand. Equation EncodeMul also inserts upscale
for the casting, but the encoding scale is different from the ad-
dition. For the multiplication, the encoding scale is the same
as the waterline of rescale mrescale, because the scale of all
input data for a program is set to mrescale. Equation Rescale
defines the position of rescale.

Notably, Equation URot, the newly proposed rule for ro-
tation, inserts upscale if the operand’s scale is less than the
noise-aware waterline for rotation mrotation, which is com-
puted by nrotate ·SNR, given the SNR parameter, to satisfy the
typing rule Equation RS in Figure 9.

After the scale management code generation is finished and
the generated code is selected for the optimal program, the
program is translated to LLVM IR which calls the FHE library
functions. We use Microsoft SEAL [51] which implements
the RNS-CKKS scheme as a backend.

A.3 Operational Semantics of ELASM
The runtime systems of ELASM defines big-step operational
semantics

HE semantics function H represents the semantics of HE
expressions h listed in Figure 8.

⟨v := h,s⟩ 7→ s[v 7→ H [[h]]s]
(9)

⟨S1,s⟩ 7→ s′

⟨S1;S2,s⟩ 7→ ⟨S2,s′⟩
(10)

⟨S,s⟩ 7→ s′ H [[h]]s′ = o

⟨S;h,s⟩ 7→ halt(o)
(11)

Operand space: A constant c ∈Vector represents the con-
stant vector of floating point numbers and a variable x ∈Var
represents a variable name which can store an operand of

Γ ⊢ h : sc(m,d) Γ ⊢ h′ : sc(m′,d) m ·m′ < mrescale
2 ·R

h×h′ rewrite−−−−→ downscale(h)×downscale(h′)
(DScale)

Γ ⊢ h : sc(m,d) m ≥ Rmrescale

h rewrite−−−−→ rescale(h)
(Rescale)

Γ ⊢ e : sc(m,d) Γ ⊢ e′ : sc(m′,d′) m > mrescale d < d′

e⊕ e′ rewrite−−−−→ downscale(e)⊕ e′
(DMatch)

Γ ⊢ h : ci(m,d) Γ ⊢ h′ : re

h+h′ rewrite−−−−→ h+upscale(h′,m)
(EncodeAdd)

Γ ⊢ e : sc(m,d) Γ ⊢ e′ : sc(m′,d′) m = mrescale d < d′

e⊕ e′ rewrite−−−−→ modswitch(e)⊕ e′
(LMatch)

Γ ⊢ h : ci(m,d) Γ ⊢ h′ : re

h×h′ rewrite−−−−→ h×upscale(h′,mrescale)
(EncodeMul)

Γ ⊢ h : sc(m,d) Γ ⊢ h′ : sc(m′,d) m < m′

h+h′ rewrite−−−−→ upscale(h,m′/m)+h′
(SMatch)

Γ ⊢ e : ci(m,d) m < mrotation

rotate(e, i) rewrite−−−−→ rotate(upscale(e,mrotation/m), i)
(URot)

Figure 17: Rewriting rules for scale management code generator. mrescale means the minimal scale required by a rescale operation
by Equation 8, and mrotation means the minimal scale required by a rotate operation. sc includes ci and pl type.

Table 3: The operational semantics of HE operations. Case represents the abbreviation of each operation. Semantics describes
how the HE semantics function H maps an HE expression h and a state s to operand space O. Condition restricts the application
of the semantics function H to satisfy the interface of an HE library.

Case Semantics Condition
∗ m ≥ 1, 0 < l < L, |vi| ≤ Rl , m/n ≥ SNR

const H [[c]]s = Rk[[c]] c ∈Vector
var H [[x]]s = o x ∈Var, sx = o ∈ O

encode H [[encode(h,m)]]s = (P [[mv]], m, L) H [[h]]s = Rk[[v]], m ≥ 1
encrypt H [[encrypt(h)]]s = (C [[v+nrescale]], m, l) H [[h]]s = (P [[v]], m, l)
negate H [[−h]]s = (C [[−v]], m, l) H [[h]]s = (C [[v]], m, l)
addcp H [[h1 +h2]]s = (C [[v1 + v2]], m, l) H [[h1]]s = (C [[v1]], m, l), H [[h2]]s = (P [[v2]], m, l)
addcc H [[h1 +h2]]s = (C [[v1 + v2]], m, l) H [[h1]]s = (C [[v1]], m, l), H [[h2]]s = (C [[v2]], m, l)
mulcp H [[h1 ×h2]]s = (C [[v1v2]], m1m2, l) H [[h1]]s = (C [[v1]], m1, l), H [[h2]]s = (P [[v2]], m2, l)
mulcc H [[h1 ×h2]]s = (C [[v1v2 +nrelinearize]], m1m2, l) H [[h1]]s = (C [[v1]], m1, l), H [[h2]]s = (C [[v2]], m2, l)
rotate H [[rotate(h, i)]]s = (C [[v′+nrotate]], m, l) H [[h]]s = (C [[v]], m, l), v′j = v(i+ j)%k, 1 ≤ j ≤ k
rescale H [[rescale(h)]]s = (C [[v+nrescale]], m/R, l −1) H [[h]]s = (C [[v]], m, l)

downscale H [[downscale(h,m′)]]s = (C [[v+nrescale]], m, l −1) H [[h]]s = (C [[v]], m, l), m/R ≤ m′ ≤ m
modswitchp H [[modswitch(h)]]s = (P [[v]], m, l −1) H [[h]]s = (P [[v]], m, l)
modswitchc H [[modswitch(h)]]s = (C [[v]], m, l −1) H [[h]]s = (C [[v]], m, l)

upscaler H [[upscale(h,m)]]s = H [[encode(h,m)]]s H [[h]]s = Rk[[v]], m ≥ 1
upscalec H [[upscale(h,m)]]s = H [[ho]]s H [[h]]s = (C [[v]],m′, l), o = (P [[[1]]],m, l), m ≥ 1

HE operations. An operand o is a element of operand space
O which is defined by O : Rk ∪P ×R×Z+ ∪C ×R×Z+.
The elements of Rn is a real value vectors where n means
the number of slots in a packed ciphertext. P and C mean
the plaintext and ciphertext space defined by encryption pa-
rameters, respectively. Note that plaintext and ciphertext need
scale m ∈ R and level l ∈ Z+ properties as described in Sec-
tion §2.1. The result of an HE operation is also an element
of operand space O.

HE semantics function: Table 3 shows the semantics of
HE operations. Homomorphic expression (h) represents the
HE operations. To describe the semantics of HE operations,
we define the state function s∈ S :Var →O and HE semantics
function H : h → S → O. Rk[[c]] embeds vector representa-
tions c to a k-dimensional real-valued vector. Moreover, P [[v]]
and C [[v]] embeds real vector v to a plaintext and ciphertext,
respectively.

Although encode and encrypt operations are essential to
use other HE operations, the operations do not appear in the
program because encryption should be done before its execu-
tion and encoding is performed in upscale.

The scale and level of result ciphertext are related to the
operands and the operation. A negate and rotate operation
preserves the scale and level of ciphertext operand. Further-
more, an addition operation preserves the scale and level of
operands. The operands of an addition operation should have
the same scale and level, and the result of the operation is the
same. For a multiplication operation, the result scale is the
product of the scale of operands.
rescale, modswitch and downscale operations manipu-

late the encryption parameter of an operand. A rescale op-
eration reduces the scale of the operand by rescaling value
Rand decreases the level. A modswitch operation simply de-
creases the level of an operand without changing scale. A
downscale operation proposed by [45] reduces the scale as
arbitrary amount.

An upscale operation works differently for a ciphertext
and a constant vector. For a ciphertext, upscale changes
the scale of the ciphertext by multiplying a identity value
which encodes 1 with a specified scale. For a constant vector,
upscale operation encodes the vector to a plaintext value.

	Introduction
	Background on RNS-CKKS
	Encryption Parameters
	Scale Management
	Noise and Error
	RNS-CKKS Constraints

	Motivation
	Overview
	Error-Latency-Aware Scale Management
	Fine-grained Noise-aware Waterline
	ELASM Compiler Design

	Error-Latency-Aware Scale Management
	Sampling of Scale Management Space
	Noise-aware Waterline Management
	Error Estimation

	ELASM IR and Type System
	ELASM IR
	Type System for Waterline Management
	Scale Management Code Generation

	Evaluation
	Pareto Curve of Error-Latency Trade-off
	Error Estimation
	Error-proportionality of SNR parameter
	Case Study: End-to-end DNN Application
	Discussion: Larger Applications

	Related Work
	Conclusion
	ELASM IR and Type System
	Type Systems of ELASM
	Rewriting Rules of ELASM
	Operational Semantics of ELASM

