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Abstract
This paper introduces JAWS, a JavaScript framework for adaptive
work sharing between CPU and GPU for data-parallel workloads.
Unlike conventional heterogeneous parallel programming environ-
ments for JavaScript, which use only one compute device when
executing a single kernel, JAWS accelerates kernel execution by
exploiting both devices to realize full performance potential of het-
erogeneous multicores. JAWS employs an efficient work partition-
ing algorithm that finds an optimal work distribution between the
two devices without requiring offline profiling. The JAWS runtime
provides shared arrays for multiple parallel contexts, hence elimi-
nating extra copy overhead for input and output data. Our prelim-
inary evaluation with both CPU-friendly and GPU-friendly bench-
marks demonstrates that JAWS provides good load balancing and
efficient data communication between parallel contexts, to signifi-
cantly outperform best single-device execution.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.3.2 [Programming Lan-
guages]: Language Classification—JavaScript

Keywords Web browser; JavaScript; data parallelism; GPU; work
sharing; scheduler; multi-core; heterogeneity

1. Introduction
As more and more applications are deployed on the web, JavaScript
has become a mainstream programming environment that enables
heavyweight web applications. Today it is common to run complex,
compute-intensive applications on the web browser such as media
players, 3D renderer, and online games. With widespread adoption
of heterogeneous processors, comprised of both CPUs and GPUs,
JavaScript is called upon to embrace heterogeneity as well as par-
allelism in processing elements to execute a wide variety of paral-
lel workloads efficiently. To this end, several parallel programming
frameworks have been recently proposed to accelerate data-parallel
workloads, including WebCL [1].

Although designed for heterogeneous parallel computing, these
frameworks use only one compute device–either CPU or GPU, but
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not both–when executing a kernel, typically selected at kernel in-
vocation. Since one device executes the kernel, the other device re-
mains mostly idle, which leaves hardware resources underutilized.
This resource underutilization problem is more pronounced on em-
bedded platforms with limited hardware resources.

While recent proposals to exploit multiple devices concurrently
to execute the kernel demonstrate promising results for conven-
tional languages (e.g., C) [3, 5], JavaScript poses unique chal-
lenges in realizing such a framework. Web Workers [2] are the only
thread-like programming construct that is universally supported by
JavaScript engines, but with shared-nothing semantics. In addition,
the data communication cost between parallel contexts (Workers) is
extremely high in JavaScript. Low communication bandwidth with
no shared memory support significantly increases the overhead of
distributing input data to and merging the kernel output from mul-
tiple parallel contexts. High communication latency degrades the
effectiveness of the work dispatching loop.

To address these challenges, we introduce JAWS, the first
JavaScript framework for efficient CPU-GPU work sharing for
data-parallel workloads. To achieve robust performance in a high-
latency JavaScript environment, we devise an efficient online work
partitioning algorithm without requiring offline training runs. To
efficiently merge the output chunks from both devices, JAWS
supports JavaScript-level shared arrays between Web Workers,
hence eliminating extra copy overhead. Our preliminary evalua-
tion demonstrates that JAWS can outperform best single-device
execution for both CPU-friendly and GPU-friendly programs.

2. JAWS Runtime System
Execution Model. JAWS implements a task scheduler, which par-
titions the kernel input into chunks and distributes them to a multi-
core CPU (running a JavaScript kernel on multiple Web Workers)
and a GPU (running a WebCL kernel) for concurrent execution. A
chunk is formed by taking a contiguous subset of the flattened in-
put data [5], specified by a pair of array indices pointing to the first
and last elements of the subset, as we focus on array-based data
parallel workloads. To effectively communicate input and output
data between workers by references, instead of values, JAWS allo-
cates shared arrays accessible by all workers (including one worker
managing GPU execution). Thus, to dispatch a chunk of work, the
scheduler needs to send only pairs of array indices instead of send-
ing the entire data. The scheduler dynamically adapts the chunk
size for each device to minimize the overhead of the work dispatch-
ing loop. Once execution of a chunk is finished on a compute de-
vice, the device writes the produced output chunk into the shared
output buffer and signals the task scheduler to fetch a new task.
This process continues until the task queue becomes empty.
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Figure 1: Runtime behavior of the proposed algorithm for gemm and syrk
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(b) Breakdown of Execution Overhead
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Figure 2: Performance of JAWS running two Polybench benchmarks: gemm and syrk

Work Partitioning Algorithm. The task scheduler of JAWS sets
the initial chunk size of both devices to be a predetermined fraction
(denoted by α) of the work size and dispatches a chunk to each de-
vice. The scheduler multiplicatively increases the chunk size by a
constant factor (denoted by β) until the throughput becomes stabi-
lized. Note that the throughput of each device generally increases
with an increasing chunk size and gets saturated beyond a certain
threshold. Once the throughput of either device is saturated, the
scheduler partitions the remaining work in proportional to each de-
vice’s throughput and dispatches it to both devices. Figure 1 cap-
tures runtime behaviors of the algorithm with two benchmarks used
for evaluation: gemm and syrk. The two stacked figures for each
benchmark show (i) throughput, and (ii) execution time line for
chunk execution, respectively. As time goes on, the chunk size in-
creases multiplicatively by a factor of β until throughput gets satu-
rated. Once this point is reached, the remaining work is partitioned
and distributed to both devices. The algorithm demonstrates good
load balancing, hence yielding good performance.

3. Preliminary Evaluation
JAWS is evaluated on two 6-core Intel Xeon E5645 CPUs clocked
at 2.40GHz with 12GB RAM and a 96-core Nvidia Quadro 600
GPU clocked at 1.28GHz with 1GB of global memory. We use
two Polybench benchmarks [4]: syrk (CPU-friendly) and gemm
(GPU-friendly). The input size is set to (2048, 2048) for both.

Figure 2(a) shows the overall performance speedup over se-
quential execution. JAWS and JAWS-NoShm denote the results for
JAWS with and without shared array support, respectively, and the
shared array is turned on for the static optimal case. While JAWS-
NoShm suffers high slowdown due to communication overhead,
JAWS increases performance close to the static optimal algorithm
for both CPU-friendly and GPU-friendly benchmarks.

Figure 2(b) breaks down the runtime overhead into three com-
ponents. The shared array (labeled “Shm”) eliminates most of the
overhead from (task) dispatch and merge operations. The overhead
of memory copy between the host (CPU) and the device (GPU) (de-
noted by memcpy) remains constant because the shared array does
not eliminate this overhead. Finally, Figure 2(c) compares work
distribution of JAWS (labeled “J”) against that of the static opti-
mal partitioning algorithm (labeled “O”) with different input sizes.
JAWS allocates chunks to both devices in proportional to their rela-
tive throughput, to yield good load balance, and hence near-optimal
performance speedups.
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