
TeMCO: Tensor Memory Compiler Optimization
across Tensor Decompositions in Deep Learning Inference
Seungbin Song
Yonsei University

Seoul, Republic of Korea
seungbin@yonsei.ac.kr

Ju Min Lee
Yonsei University

Seoul, Republic of Korea
jumin@yonsei.ac.kr

Haeeun Jeong
Yonsei University

Seoul, Republic of Korea
haeeun.jeong@yonsei.ac.kr

Hyunho Kwon
Yonsei University

Seoul, Republic of Korea
hyunho@yonsei.ac.kr

Shinnung Jeong
Yonsei University

Seoul, Republic of Korea
shin0403@yonsei.ac.kr

Jaeho Lee
Yonsei University

Seoul, Republic of Korea
jaeho@yonsei.ac.kr

Hanjun Kim
Yonsei University

Seoul, Republic of Korea
hanjun@yonsei.ac.kr

ABSTRACT
Since the increasing complexity of deep learning models, tensor
decomposition is one of the promising solutions that reduce com-
putational complexity in deep learning models. By decomposing
a convolution layer with a large weight tensor into multiple lay-
ers with smaller weight tensors, tensor decomposition can reduce
the number of operations and weight memory spaces. However,
existing tensor decomposition schemes face difficulties in reduc-
ing peak memory usage of the entire inference. The decomposed
layers produce the reduced-sized tensors during inference, but the
reduced tensors should be restored to their original sizes due to skip
connections and non-decomposed activation layers between the
decomposed layers. To reduce the peak memory usage of the end-to-
end inference of the decomposed models, this work proposes a new
tensor memory optimization scheme and its prototype compiler,
called TeMCO. TeMCO replaces the original internal tensors used
in the skip connections with reduced internal tensors derived by
the decomposed layers. In addition, TeMCO fuses the decomposed
layers and the non-decomposed activation layer and thus keeps the
reduced internal tensors produced without restoring them. Thanks
to the optimizations, this work reduces memory usage of internal
tensors by 75.7% for 10 models of 5 deep learning architectures.

CCS CONCEPTS
• Software and its engineering→ Compilers; • Computing
methodologies→ Factorization methods; Neural networks.

KEYWORDS
Tensor Decomposition, Deep Learning, Compilers
ACM Reference Format:
Seungbin Song, Ju Min Lee, Haeeun Jeong, Hyunho Kwon, Shinnung Jeong,
Jaeho Lee, and Hanjun Kim. 2024. TeMCO: Tensor Memory Compiler Opti-
mization across Tensor Decompositions in Deep Learning Inference. In Pro-
ceedings of the 53rd International Conference on Parallel Processing (ICPP’24),
August 12–15, 2024, Gotland, Sweden. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3673038.3673048

ICPP ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 53rd International Conference on Parallel Processing (ICPP’24), August 12–15, 2024,
Gotland, Sweden, https://doi.org/10.1145/3673038.3673048.

1 INTRODUCTION
As deep learning models become increasingly complex, model com-
pression techniques have been devised to reduce the computational
overheads of deep learning inferences. The model compression
schemes, such as pruning [9, 22, 23], quantization [12, 21, 41, 49],
knowledge distillation [6, 25, 40, 47], and tensor decomposition [10,
16, 28, 29, 39, 42–46], reduce the size and computational complexity
of models while maintaining a high level of accuracy.

Existing works [16, 29, 42–45] employ tensor decomposition
techniques in deep learning models to reduce the number of op-
erations needed to perform convolutions with marginal accuracy
drop. Tensor decomposition [10, 28, 39, 46] reduces computational
complexity by using mathematical techniques, decomposing a con-
volution into a composition of smaller convolutions. Since tensor
decomposition factorizes a large-weight tensor of an original convo-
lution into several smaller-weight tensors, a convolution sequence
of these tensors produces an output that is approximately equiva-
lent to the output of the original convolution. Consequently, the
existing works replace convolution layers in the original model
with decomposed convolution sequences, which generate the same
output tensor shape as the original convolutions.

Although tensor decomposition effectively reduces the number
of operations, existing techniques miss a crucial opportunity to
reduce peak memory usage. Peak memory usage is critical since it
can affect the restriction of running a deep learning model fitting
into the DRAM capacity of a GPU and can hamper researchers’
flexibility to study machine learning algorithms [32]. Decomposed
convolution sequences generated by tensor decomposition can tem-
porarily produce reduced-sized tensors inside. However, because
the internal tensor that holds the input and output of the decom-
posed convolution sequences retains the same size as in the original
convolution, the peak memory usage remains unchanged. There-
fore, tensor decomposition cannot reduce peak memory usage due
to the internal tensors.

Furthermore, reducing the peak memory usage of a decomposed
deep learning model becomes a more challenging problem when
considering deep learning models with skip connections [8, 11, 34].
The skip connections preserve the output of a block and are later
used as input for distant layers. In this case, the reduced tensors
should be restored to their original sizes for the skip connections
and reserved in memory. Therefore, models with skip connections
occupy significant memory space to preserve these tensors during

https://doi.org/10.1145/3673038.3673048
https://doi.org/10.1145/3673038.3673048

ICPP ’24, August 12–15, 2024, Gotland, Sweden Song et al.

inference, resulting in a decomposed model exhibiting a similar
memory usage trend as the original model.

To effectively reduce memory usage in the inferences of tensor-
decomposed models, this work proposes TeMCO: Tensor Memory
Compiler Optimization across tensor decompositions in deep learn-
ing inference.Wemake a key finding that compiler optimization can
effectively transform decomposed models by substituting reduced
tensors for internal tensors. First, TeMCO replaces the uses of the
original tensors with the reduced tensors in the skip connections,
copying the restore layers at the end of the connections. Second,
TeMCO fuses non-decomposed activation layers and decomposed
convolution layers. The fused layers do not allocate the input and
output internal tensors and perform computations only with the
reduced tensors. Consequently, these compiler transformations al-
low the reduced tensors in the decomposed sequences to be fully
utilized without restoration throughout the whole inference.

This work evaluates the prototype TeMCO compiler using 10
models of 5 deep learning architectures, which includes image clas-
sification with convolution-based deep learning models [17, 37]
and the models with skip connections [8, 11] and image segmen-
tation with UNet [34]. This work compares the performance with
baseline Tucker-decomposed models [39], applying optimizations
of TeMCO. The evaluation results show that TeMCO successfully
reduces peak memory usage of internal tensors by 75.7%, with from
1.08× to 1.70× inference time overheads in batch sizes. Further-
more, the TeMCO’s optimizations do not drop the accuracy of the
decomposed models.

Contributions of this work are:

• TeMCO’s compiler optimization scheme that reduces peak
memory usage of internal tensors in tensor-decomposed
model inference,
• skip connection optimization that replaces tensors in skip
connections with the precedent reduced tensors,
• and layer fusion that fuses non-decomposed activation lay-
ers with decomposed convolution layers to utilize reduced
tensors throughout the model inference.

2 BACKGROUND & MOTIVATION
In this section, we introduce more details of widely-used tensor
decomposition techniques (Section 2.1) and provide a more precise
analysis of peak memory usage in the decomposed deep learning
models (Section 2.2). Based on this analysis, we propose motivations
and ideas for reducing peak memory usage in the decomposed
models (Section 2.3).

2.1 Tensor Decomposition
Tensor decomposition, such as Canonical Polyadic (CP) decom-
position [10], Tucker decomposition [39], and Tensor-Train (TT)
decomposition [28] decomposes a weight tensor of a convolution
layer into low-ranked factor matrices and core weights. Figure 1
shows how each tensor decompositions decompose a tensor into
small tensors. The first and the last weight tensors are 2D factor
matrices, and the shapes of the core weight tensors depend on the
tensor decomposition methods. The multiplication of the decom-
posed weight tensors approximates the original weight tensor.

C′

C K

K

…

C1

K
K

C2C

C1

First

C2

C′

Last× Core1 × Core2 ×

(a) Original conv weight (b) CP decomposition

K
K

…C2

C1

C
C1

First ×

C2

C′

Last×Core
C

C1

First

C2

C′

Last× Core1 ×

K

C3

C1

K

C2C3

Core2 ×

(c) Tucker decomposition (d) TT decomposition

Figure 1: Tensor decomposition types

C

W

C′

C
K

K

…

C′

H′

W′

Input

conv

Output

H

(a) Original convolution layer

C

H

W

C2

C1

K

K

…

C′

H′

W′

Input

Core conv

Output

C

C1

First
conv

C1

W

C2

H′

W′

Reduced2

C2

C′
H

Reduced1

Last
conv

(b) Decomposed convolution sequence

Figure 2: A tensor decomposition example on a convolution
layer

We can construct a decomposed convolution sequence that mimics
the original convolution layer using these decomposed tensors.
Figure 2 shows the original convolution layer and the decomposed
convolution sequence constructed by tensor decomposition. The
first and the last tensors in Figure 1 become the weights of the 1× 1
convolution layers in Figure 2b, respectively, and the core tensor(s)
in Figure 1 are the weight(s) of the core convolution layer(s) in
Figure 2. Note that the core convolutions are various in the types
of tensor decomposition, but the first and last convolution layers
are consistent among tensor decomposition methods.

The channel 𝐶 of the input tensor reduces to 𝐶1 after being
convoluted by the first decomposed convolution layer. Then, the
core convolutions perform a small-sized convolution, generating a
reduced internal tensor with channel size 𝐶2. The last decomposed
convolution layer restores the channels of the reduced internal
tensor from 𝐶2 to 𝐶′, which is the channel size of the original
output. Here, the first and the last convolution layers play a key
role in reducing and restoring internal tensors. In the remainder of
the paper, we alias the first convolution layer as fconv, the last
convolution layer as lconv, and call the internal tensors within

TeMCO: Tensor Memory Compiler Optimization across Tensor Decompositions ICPP ’24, August 12–15, 2024, Gotland, Sweden

a decomposition sequence (Reduced1, Reduced2 in Figure 2b) as
reduced tensors.

Previous work [42, 44, 45] shows that tensor decomposition re-
duces FLOPS and inference time of deep learning models. However,
their scheme does not reduce the peak memory usage by internal
tensors. The following analysis shows the limitations of the tensor
decomposition schemes on the point of memory efficiency.

2.2 Peak Memory Usage Analysis
As the initial step of analyzing peak memory usage overheads,
this work analyzes the peak memory usage of tensor-decomposed
sequences in Figure 3. The peak memory usage of a model infer-
ence consists of the memory usage by two types of tensors: weight
tensors and internal tensors. Weight tensors save a model’s weight
parameters. On the other hand, internal tensors hold intermediate
results, such as feature maps and skip connections throughout the
model inference.

For the weight tensors, deep learning frameworks [1, 30] load
the whole weight tensors at the beginning of model inference. The
size of the weight tensors in the two convolution layers (Figure 3a)
is as follows in Equation (1):

𝐶𝐶′𝐾2 +𝐶′𝐶′′𝐾 ′2 (1)
Here, tensor decomposition can reduce the memory usage of

the weight tensors by setting the channel sizes of reduced tensors
smaller than the sizes of the original tensors. The size of weight
tensors in the decomposed convolution sequences (Figure 3b) is as
follows in Equation (2):

𝐶𝐶1 +𝐶1𝐶2𝐾2 +𝐶2𝐶′ +𝐶′𝐶3 +𝐶3𝐶4𝐾2 +𝐶4𝐶′′ (2)
On the point of internal tensors, the deep learning frameworks [1,

30] dynamically allocate and free the memory spaces of the internal
tensors. In other words, the frameworks allocate only the internal
tensors required by the currently running layer and free the tensors
that will not be used in future inference. Therefore, the peak mem-
ory usage of the internal tensors can be calculated as the maximum
of each layer’s input plus output tensor sizes. The peak memory us-
age by the internal tensors in the two convolution layers (Figure 3a)
is as follows in Equation (3):

𝑀𝐴𝑋 (𝐶𝐻𝑊 +𝐶′𝐻 ′𝑊 ′, 2𝐶′𝐻 ′𝑊 ′, 𝐶′𝐻 ′𝑊 ′ +𝐶′′𝐻 ′′𝑊 ′′) (3)

However, tensor decompositions cannot reduce the peak mem-
ory usage of the internal tensors because of the non-decomposed
activation layer. The peak memory usage by internal tensors in
the decomposed convolution sequences (Figure 3b) is as follows in
Equation (4):

𝑀𝐴𝑋 (𝐶𝐻𝑊 +𝐶1𝐻𝑊 , 𝐶1𝐻𝑊 +𝐶2𝐻 ′𝑊 ′, 𝐶2𝐻 ′𝑊 ′ +𝐶′𝐻 ′𝑊 ′,
2𝐶′𝐻 ′𝑊 ′, 𝐶′𝐻 ′𝑊 ′ +𝐶3𝐻 ′𝑊 ′, 𝐶3𝐻 ′𝑊 ′ +𝐶4𝐻 ′′𝑊 ′′,
𝐶4𝐻

′′𝑊 ′′ +𝐶′′𝐻 ′′𝑊 ′′)
(4)

Tensor decomposition sets the channel sizes of the reduced in-
ternal tensors (𝐶1 to 𝐶4) are smaller than the sizes of the origi-
nal tensors (𝐶 to 𝐶′′). Therefore, the Equation (4) is reduced to

2𝐶′𝐻 ′𝑊 ′. The peak memory usage by internal tensors in Equa-
tion (4) is similar to the usage in Equation (3), and the peak memory
usage 2𝐶′𝐻 ′𝑊 ′ comes from the internal tensors (Output1 and In-
put2) of the activation layer. Therefore, the internal tensors used
by the non-decomposed activation layer take a large portion of the
peak memory usage of inference in Figure 3b.

2.3 Motivation
The existing tensor-decomposed model misses an opportunity to
reduce the peak memory usage of the internal tensor, even though
tensor decomposition generates tensors with reduced-sized chan-
nels in decomposed convolution sequences. Due to skip connections
and activation layers, the reduced tensors should be restored to their
original channel sizes. To demonstrate the effect of skip connec-
tions and activation layers, Figure 4 shows the memory usage of
the internal tensor in both the original and the decomposed models
using Tucker decomposition [39]. Figure 4a and Figure 4b depict
the memory usage during 4-batch inference with UNet [34] and
VGG-16 [37], respectively.

In Figure 4a, thememory usage of skip connections takes 76.2% of
the peakmemory usage by internal tensors in the UNet-decomposed
model. The UNet structure is an hourglass shape with skip connec-
tions horizontally connecting the downsampling and upsampling
blocks. In the decomposed model inference, decomposed convolu-
tion sequences in the downsampling blocks restore reduced tensors
to their original sizes, and the model leaves the original tensors
in the skip connections. These original tensors reside until the
upsampling blocks consume them. Therefore, memory usage by
skip connections in the decomposed model is similar to that of the
original model.

On the other hand, the memory usage by internal tensors peaks
at the computation of non-decomposed activation layers in VGG-16,
as shown in Figure 4b. VGG has a linear sequence of convolution,
activation, and pooling layers. Decomposed convolution sequences
in the VGG-decomposed model reduce the internal tensor sizes
when performing core convolutions. However, the sequences soon
restore the reduced tensors to their original sizes to be processed in
non-decomposed activation layers. Therefore, the peak memory us-
age by non-decomposed layers in the decomposed model is similar
to the peak in the original model.

To solve this problem, a new optimization is needed to transform
a decomposed deep-learning model to use only reduced tensors as
depicted in Figure 5. Figure 5 displays the optimized convolution
sequence consisting of reduced tensors, achieved by fusing the lconv
1 and ReLU with the fconv 2, and removing Output1 and Input2
from Figure 3b. Since Figure 3b did not contain the skip connections,
the solution needs more detailed steps about skip connection.

In detail, this work proposes TeMCO consisting of two important
tensor memory compiler optimization. First, TeMCO suggests skip
connection optimization. Initially, TeMCO examines the program
dependence graph of the internal tensors in the skip connections
and identifies predecessor reduced tensors. Then TeMCO substi-
tutes the original tensors with the reduced tensors within the skip
connections, adding restorations of the reduced tensors at the end
of skip connections. Second, TeMCO fuses non-decomposed ac-
tivation layer with two decomposed convolution layers as same

ICPP ’24, August 12–15, 2024, Gotland, Sweden Song et al.

C′

H′

W′

Output1 Input2

C′

W′

K′

K′

…

conv2

C′′

Output2

H′′

W′′

ReLU

H′

W′

C

W

C′

C
K

K

…

Input1

conv1

H

C′

C′′H′

(a) Original convolution layers and an activation layer

K

C2

C1

K

…

Core conv1

C′

H′

W′

Output1

C

C1

First

conv1

C1

W

H

C

H

W

Input1

C2

H′

W′

Last

conv1

C2

C′

Input2

C′

W′

H′ C4

C3

K′

K′

…

Core conv2

W′

C3

Reduced3

C′

C3

H′

C4

H′′

Reduced4

C4

C′′

W′′

C′′

Output2

H′′

W′′

ReLU

H′

W′

Reduced1

First

conv2

Last

conv2

Reduced2

(b) Decomposed convolution sequences and an activation layer

Figure 3: A tensor decomposition example on convolution layers alongside non-decomposed activation layer

0

400

800

1200

1600

2000

In
te

rn
al

 T
en

so
r

(M
B

)

Layers

Original Decomposed TeMCO

(a) UNet

0

20

40

60

80

100

120

In
te

rn
al

 T
en

so
r

(M
B

)

Layers

Original

Decomposed

TeMCO

(b) VGG-16

Figure 4: The memory usage by internal tensors of UNet and
VGG-16 with batch size 4, RTX 4090

as Figure 5, and the fused layer performs computations only with
reduced tensors. The restorations of skip connections can also be
hidden in the fused layers by applying further transformations.

Note that TeMCO transforms the decomposed model while pre-
serving the original semantics. Therefore, the optimizations main-
tain the accuracy of the decomposed models. For example, previous
work [42, 45] proposes training algorithms for decomposed models
with high accuracy. If a tensor decomposition scheme provides a
pre-trained decomposed model, TeMCO can reduce the peak mem-
ory usage of inference while preserving its model’s accuracy.

3 DESIGN AND IMPLEMENTATION
This work proposes TeMCO that optimizes tensor-decomposed
models to reduce memory usage by internal tensors. TeMCO’s op-
timization procedure (Figure 6) consists of two main components.
The first component is skip connection optimization (Section 3.1)
that replaces skip connections with reduced tensors. The second
component is activation layer fusion (Section 3.2) that fuses non-
decomposed activation layers with neighboring lconv and fconv.
TeMCO further applies layer transformations (Section 3.3) that opti-
mize concatenations and lconv layers in skip connections.

3.1 Skip Connection Optimization
TeMCO optimizes skip connections to reduce the peak memory
usage of the decomposed model. In Algorithm 1, skip connection
optimization consists of the following steps: 1) find skip connec-
tions with tensor liveness analysis results, 2) identify predecessor
reduced tensors and restore layers, 3) calculate computation and
memory overheads of copying restore layers, 4) andmove the copied
layers before the uses of the skip connection and replace the skip
connection with the reduced tensor.

First, to find skip connections in a model, TeMCO analyzes layers
of the model from start to end and calculates the liveness of the
tensors (Lines 11 to 16) in Algorithm 1. The tensor liveness analyzer
records the first definition of a tensor and the last use of the tensor.
With this begin and end information, the compiler measures the
lifespan of the tensor (Line 18) and identifies skip connections. In
Figure 7a, TeMCO recognizes tensor b as a skip connection.

With the skip connections, TeMCO finds predecessor reduced
tensors and restore layers in Algorithm 2. The FindReduced func-
tion (Lines 17 to 33) recursively traverses predecessors of a skip
connection and returns the restore layers in order. The order of
the layers is determined with the Compare function (Lines 8 to 9).
Since the execution order affects the peak memory usage of internal
tensors, Compare(𝑎, 𝑏) calculates the peak memory usage of 𝑎 → 𝑏

and 𝑏 → 𝑎 sequences and compares them. This comparison is sub-
optimal in the two predecessors. Previous work [19, 31, 50] proposes
execution scheduling algorithms to reduce peak memory usage,

TeMCO: Tensor Memory Compiler Optimization across Tensor Decompositions ICPP ’24, August 12–15, 2024, Gotland, Sweden

K

C2

C1

K

…

Core conv1

C

C1

First

conv1

C1

W

H

C

H

W

Input1

C2

H′

W′

C4

C3

K′

K′

…

Core conv2

W′

Reduced3

C3

H′

C4

H′′

Reduced4

C4

C′′

W′′

C′′

Output2

H′′

W′′

Reduced1

Last

conv2

Reduced2

Fused Layer

C3

C2

W′

H′

Figure 5: TeMCO optimized convolution sequence result with activation layer fusion

Activation

Layer Fusion

Skip Connection

Optimization

① Conv-act.-conv fusion

② Layer transformation

and activation fusion

① Copy restore operations

② Replace skip connections

 with reduced tensors

Tensor-decomposed model

conv1 conv2 conv3First conv (fconv)

Last conv (lconv)

Core convolutions

Activation layer

Original tensors

Reduced tensors

① ②

①

② ①

Figure 6: Overall structure of TeMCO

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

e = concat(d,b)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out
(a) Decomposed model

(b) Skip connection opt. model

Figure 7: Skip connection optimization example

and we will develop our scheduling algorithm by augmenting them.
FindReduced returns lconv as a leaf node using IsLConv (Lines 1
to 7) that returns whether the layer type is a convolution with 1× 1
kernel and increases the channel size. In Figure 7a, FindReduced(b)
returns [b=relu(a), a=conv1.lconv(a2)].

Back to Algorithm 1, TeMCO calculates computation and mem-
ory overheads of copying restore layers. The Overhead function
(Lines 1 to 9) calculates FLOPS and peak memory usage of restore

Algorithm 1: Skip connection optimization
Input :An ordered tensor node list 𝐿 in SSA form
Output :Skip-connection-optimized tensor node list𝑂

// PRED(𝑣,𝐺): predecessor list of 𝑣 in 𝐺

// SUCC(𝑣,𝐺): successor list of 𝑣 in 𝐺

// DISTANCE(𝑎,𝑏): distance of two node 𝑎, 𝑏

// SIZE(𝑣): tensor size of 𝑣 by shape inference

// FLOPS(𝑣): FLOPS of 𝑣 by calculating weight sizes

1 Function Overhead(n,l):
2 𝑐 ← 0, 𝑚 ← 𝑆𝐼𝑍𝐸 (𝑛)
3 for e in 𝑙 .𝑙𝑖𝑠𝑡 do
4 𝑐 ← 𝑐 + FLOPS(e)
5 end
6 for p in PRED(n,G) do
7 𝑚 ←𝑚 + SIZE(p)
8 end
9 return 𝑐 ≤ COMPUTE_THRESHOLD and 𝑙 .𝑝𝑒𝑎𝑘 ≤ 𝑚

10 𝑙𝑖𝑣𝑒 ← {},𝑂 ← 𝐿,𝐺 ← PDG(L) // program dependence graph

// Tensor liveness analysis

11 for 𝑛 in 𝐿 do
12 𝑙𝑖𝑣𝑒 [𝑛] .𝑏𝑒𝑔𝑖𝑛 ← 𝑛

13 for 𝑝 in PRED(𝑛,𝐺) do
14 𝑙𝑖𝑣𝑒 [𝑝] .𝑒𝑛𝑑 ← 𝑛

15 end
16 end

17 for 𝑛 in 𝐿 do
// Identify skip connections with distance

18 𝑑 ← DISTANCE(𝑙𝑖𝑣𝑒 [𝑛] .𝑏𝑒𝑔𝑖𝑛, 𝑙𝑖𝑣𝑒 [𝑛] .𝑒𝑛𝑑)
19 if 𝑑 >DISTANCE_THRESHOLD then

// Find reduced tensors and restore operations

20 𝑙 ← FindReduced(𝑛,𝐺)
// Calculate overheads

21 if Overhead(n,l) then
22 for 𝑠 in SUCC(n) do

// Insert operations 𝑙 before 𝑠

23 𝑂 ← InsertBefore(O,s,COPY(l.list))
24 end
25 end

layers. If the length of the restore layer list is long and requires
many layers to restore the skip connection, or the peak memory
usage of copying the layers is much higher than not copying the
layers, the algorithm decides not to copy the layers. Currently, the
computation threshold is set to FLOPS of the corresponding parts
of the original model without decomposition.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Song et al.

Algorithm 2: Find restore layers and reduced tensors
Input :A tensor node 𝑣, a program dependence graph𝐺
Output :Results 𝑟𝑒𝑠 of reduced tensor node list, size, peak memory

usage

1 Function IsLConv(𝑣):
2 𝑜𝑝 ← OP(𝑣) // operator of 𝑣

3 if 𝑜𝑝.𝑡𝑦𝑝𝑒 = 𝑐𝑜𝑛𝑣 then
4 if 𝑜𝑝.𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 𝑜𝑝.𝑠𝑡𝑟𝑖𝑑𝑒 = (1, 1) then
5 if 𝑜𝑝.𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 > 𝑜𝑝.𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 then
6 return True
7 return False

8 Function Compare(𝑎, 𝑏):
9 return 𝑎.𝑠𝑖𝑧𝑒 + 𝑏.𝑝𝑒𝑎𝑘 < 𝑏.𝑠𝑖𝑧𝑒 + 𝑎.𝑝𝑒𝑎𝑘

10 Function Peak(𝑙 , 𝑣):
11 𝑝𝑒𝑎𝑘 ← 0, 𝑟𝑒𝑠𝑖𝑑𝑒𝑑 ← 0
12 for 𝑒 in 𝑙 do
13 𝑝𝑒𝑎𝑘 ← MAX(𝑟𝑒𝑠𝑖𝑑𝑒𝑑 + 𝑒.𝑝𝑒𝑎𝑘, 𝑝𝑒𝑎𝑘)
14 𝑟𝑒𝑠𝑖𝑑𝑒𝑑 ← 𝑟𝑒𝑠𝑖𝑑𝑒𝑑 + 𝑒.𝑠𝑖𝑧𝑒
15 end
16 return← MAX(𝑟𝑒𝑠𝑖𝑑𝑒𝑑 + SIZE(𝑣), 𝑝𝑒𝑎𝑘)

17 Function FindReduced(𝑣,𝐺):
18 if IsLConv(v) then
19 𝑟𝑒𝑠.𝑙𝑖𝑠𝑡 ← [𝑣]
20 𝑟𝑒𝑠.𝑠𝑖𝑧𝑒 ← SIZE(𝑣)
21 𝑟𝑒𝑠.𝑝𝑒𝑎𝑘 ← SIZE(𝑣) + SIZE(PRED(𝑣,𝐺) [0])
22 return 𝑟𝑒𝑠

23 else
24 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ← []
25 for 𝑛 in PRED(𝑣,𝐺) do
26 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ← 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ∪ FindReduced(n,G)
27 end
28 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑖𝑠𝑡 ← ORDER(Compare, 𝑝𝑟𝑒𝑑𝐿𝑖𝑠𝑡)
29 𝑟𝑒𝑠.𝑙𝑖𝑠𝑡 ← CONCAT(𝑒.𝑙𝑖𝑠𝑡 for 𝑒 in 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑖𝑠𝑡) ∪ [𝑣]
30 𝑟𝑒𝑠.𝑠𝑖𝑧𝑒 ← SIZE(𝑣)
31 𝑟𝑒𝑠.𝑝𝑒𝑎𝑘 ← Peak(𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑖𝑠𝑡, 𝑣)
32 return 𝑟𝑒𝑠

33 end

After evaluating computation and memory overheads, TeMCO
copies the restore layers and inserts them before the use of the
skip connections (Line 23). In Figure 7, the compiler copies a =
conv1.lconv(a2) and b = relu(a) and inserts before e (renaming
a to a’ and b to b’). Finally, the compiler replaces the skip connec-
tion of tensor b with the compressed tensor a2, whose channel size
is smaller than that of the original skip connection. As a result, the
skip connection optimization reduces peak memory usage.

3.2 Activation Layer Fusion
Although the compiler optimizes the skip connections, the orig-
inal tensors still reside in the model (Figure 8a), which take the
large portion of peak memory usage as described in Section 2.2.
Therefore, TeMCO fuses a non-decomposed activation layer with
neighboring decomposed convolutions to reduce peak memory us-
age of internal tensors. To clarify our definition, activation layer
fusion means the fusion of a lconv-activation-fconv sequence, not

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

a = conv1.lconv(a2)

b = relu(a)

c1 = conv2.fconv(b)

c2 = conv2.cconv(c1)

c = conv2.lconv(c2)

d = relu(c)

a’ = conv1.lconv(a2)

b’ = relu(a’)

e = concat(d,b’)

f1 = conv3.fconv(e)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

a1 = conv1.fconv(in)

a2 = conv1.cconv(a1)

c1 = lconv1_relu

 _fconv2(a2)

c2 = conv2.cconv(c1)

c3 = lconv2_relu

 _fconv3_1(c2)

a3 = lconv1_relu

 _fconv3_2(a2)

f1 = add(c3,a3)

f2 = conv3.cconv(f1)

f = conv3.lconv(f2)

out = relu(f)

return out

(a) Residual connection opt. model

(b) Fused model

Figure 8: Activation fusion example

the fusion [3, 27] of a convolution-activation pair, nor the activation
data compression [5, 14] in deep learning training.

The fused kernel does not allocate output and input internal
tensors (Output1 and Input2 in Figure 3b) and performs the com-
putations with the reduced tensors only (Figure 5). In Figure 8, the
compiler fuses conv1.lconv, relu, and conv2.fconv into lconv1_
relu_fconv2. As a result, the fused kernel does not use the original
tensors (a, b) and only uses the reduced tensors (a2, c1).

In between lconv and fconv, there are non-decomposed acti-
vations like ReLU [2], SiLU [7], and pooling layers. These non-
decomposed layers are element-wise and perform their layers on all
elements in tensors. Because fconv conducts convolutions on each
resulting channel and accumulates the multiplied results, all the
individual activation-applied values are required to produce correct
results. Therefore, a compiler cannot reorder lconv-activation-fconv
sequences nor omit one of these layers. To fuse these sequences,
this work implements GPU-parallelized fused kernels with CUDA.

Listing 1 briefly describes a fused kernel implementation of lconv-
relu-fconv and lconv-relu-pool-fconv in Figure 5. This work imple-
ments the fused kernel to perform parallelized operations over 𝐶3,
𝐻 , and𝑊 dimensions. Here, lconv and fconv are channel-wise 1× 1
convolutions, which restores and reduces each channel, respec-
tively. The fused kernel first performs nested and tiled convolutions
of lconv on input tensor IN and weight tensor W1, resulting in the
output channel𝐶′. With the accumulated result v1, the fused kernel
second applies activation relu and saves the result into a tile tile.
If a pooling layer is included in the fusion, the fused kernel applies
the pooling pool over 𝐻 and𝑊 dimensions in the tile tile. After
applying activation and pooling, the fused kernel performs 1 × 1
convolution over the channel 𝐶′ and updates the result v3 to the
output tensor OUT. Listing 1 illustrates a fused kernel of both with
and without pooling layers, but the actual implementation has an
individual kernel of each case.

The fused kernel does not allocate the whole size of the original
tensor Output1 and Input2; instead, the kernel uses tiled buffers
tile in the shared memory. This means applying activation layer
fusion can skip allocating the original internal tensors and reduce
peak memory usage.

TeMCO: Tensor Memory Compiler Optimization across Tensor Decompositions ICPP ’24, August 12–15, 2024, Gotland, Sweden

1 Tensor fused_kernel(
2 Tensor IN,W1,B1,W2,B2,int p=1){
3 /* T: tile size
4 bx,by,bz: block idx of x,y,z dimension
5 tx,ty,tz: tile idx of x,y,z dimension
6 p: kernel size of pooling layer ,
7 p<2 for no pooling */
8 c2 = bx*T + tx; //index of C' with x
9 h = by*T + ty; //index of H' with y
10 w = bz*T + tz; //index of W' with z
11 v3 = B2[c2]; //load bias
12 for(i=0; i<C/T; i++){
13 v1 = B1[c]; //load bias
14 for(j=0; j<C1/T; j++){
15 //load IN and W1 into tile
16 tileIN[tx][ty][tz] = IN[j*T+tx][h][w];
17 tileW1[tx][ty] = W1[i*T+tx][j*T+ty];
18 __syncthreads ();
19 // perform lconv
20 for(k=0; k<T; k++)
21 v1 += tileIN[k][ty][tz]* tileW1[tx][k];
22 __syncthreads ();
23 }
24 // perform activation and load W2
25 tile[tx][ty][tz] = relu(v1);
26 tileW2[tx][ty] = W2[c2][i*T+ty];
27 __syncthreads ();
28 // perform pooling
29 if(p>=2){
30 v2 = pool(tile[tx][p*ty][p*tz],...,
31 tile[tx][p*ty+p-1][p*tz+p-1]);
32 __syncthreads ();
33 tile[tx][ty][tz] = v2;
34 __syncthreads ();
35 }
36 // perform fconv
37 for(l=0; l<T; l++)
38 v3 += tile[l][ty][tz]* tileW2[tx][l];
39 __syncthreads ();
40 }
41 // update result to OUT
42 OUT[c2][h][w] = v3;
43 return OUT;
44 }

Listing 1: Pseudo code of fused kernels

3.3 Layer Transformation
TeMCO optimizes the layers alongside a concatenation layer and
an add layer that merges skip connections by applying concatena-
tion layer transformation. deep learning models with skip connec-
tions [11, 34] use concatenation layers to accumulate skip connec-
tions, The concatenation layer in the original decomposed model
concatenates the decompressed internal tensors in the channel di-
mension (Figure 9b). Because the concatenated original tensors take
a large portion of the peak memory usage, the compiler transforms
concatenation-fconv sequences to apply activation layer fusion.

In Figure 9b, a fconv layer is a 1 × 1 convolution that performs
convolution for each channel row with length 𝐶 +𝐶′ in the con-
catenated tensor. The concatenation layer concatenates two input
tensors over the channel dimension. We can divide the channel
row vector and the weight matrix regarding the channel 𝐶 and 𝐶′.
If we apply convolutions for each divided channel row with the
corresponding weights and add the results (Figure 9c), the result
is the same as applying convolution over the original channel row
with the original weights (Figure 9b). In other words, the compiler
safely transforms the concatenation-convolution sequence into the
convolution-add sequence. After transforming the concatenation,

H

W

ReLUConcat lconv fconv

C1 C1′
C1 C1′

C′

C

C

W

H

W

H

C′

C1

H

W

C1′

H

W

H

W

C2

C2

C+C′

C

W

H

W

H

C′

H

(a) Merging lconvs with concat

ReLU

C

H

W

lconv

C1

H

W

C1

C

C

W

H

W

C2

C+C′

C2

H

H

W

fconvW

H

C′

C′

H

W

C1′

H

W

C1′

C′
H

W

ReLUlconv

Concat

(b) Concatenation sequence

C

H

W

lconv

C1

H

W

C1

C

C

H

W

C2

C

C2

H

fconvReLU

C′

H

W

lconv

C1′

H

W

C1′

C′

ReLU

W

W

C2

C′

C2

H

fconv

W

H

C′

W

C2

Add

+

H

W

H

W

H

(c) Dividing fconv with add

Figure 9: Transformations for a concatenation layer

the compiler can apply activation layer fusion for each sequences,
generating two fused kernels.

On the other hand, the concatenation-convolution sequence can
be transformed into Figure 9a by merging lconvs and applying
concatenation on input reduced tensors. To generate weights of
merged lconv, the compiler locates the weights in the diagonal
positions and adds zero padding on the rest of the weight tensor.
This transformation is applicable when the two sequences have
the same activations. By applying this transformation, weight sizes
increase, but the compiler can make a single lconv-activation-fconv
sequence. This transformation reduces the computation overheads
of calling numerous fused kernels.

ResNet and ResNet-based models [8, 33] use add layers when
accumulating skip connections on ResNet blocks. An add sequence
in the form of Figure 9c can be transformed to Figure 9a. If the
compiler transforms the add sequence to themerged lconv sequence,
the compiler can apply activation layer fusion on the sequence.
By adopting these layer transformations, this work extends the
applicability of activation layer fusion and thus reduces the peak
memory usage for tensor-decomposed models.

ICPP ’24, August 12–15, 2024, Gotland, Sweden Song et al.

0

100

200

300

400

500

600
D

ec
o

m
p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

P
ea

k
 M

em
o

ry
 U

sa
g
e

(M
B

) Weight Tensor Size

Internal Tensor Size

1500

0

1250

1000

750

500

250

1513

(a) Batch size 4

0

250

500

750

1000

1250

1500

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

P
ea

k
 M

em
o

ry
 U

sa
g
e

(M
B

) Weight Tensor Size

Internal Tensor Size

12000

0

10000

8000

6000

4000

2000

O
u

t
o

f
M

em
o

ry

(b) Batch size 32

Figure 10: Peak memory usage of the 10 models’ inferences

4 EVALUATION
4.1 Experimental Setup
This work implements a prototype compiler of TeMCO with Py-
Torch 2.2 [30] and fused kernels (Section 3.2) with CUDA. As evalu-
ation hardware, this work uses Ryzen 9 3950X with 128 GB memory
and RTX 4090 with 24 GB GPU memory. Benchmark sets include
image classification of AlexNet [17], VGG [37], ResNet [8] and
DenseNet [11] and image segmentation of UNet [34]. Image classifi-
cation uses the ILSVRC 2012 [35] dataset, and image segmentation
uses the Carvana [36] dataset. This work applies Tucker decom-
position [39] to the 10 models with a decomposition ratio of 0.1
and uses the decomposed models as a baseline denoted as Decom-
posed in the following graphs. Since AlexNet and VGG do not have
skip connections, this work only applies activation layer fusion
for the models represented as Fusion. This work applies both skip
connection optimization and layer fusion to models such as ResNet,
DenseNet, and UNet, which have skip connections, and evaluates
the effect of skip connection optimization without and with layer
fusion, indicated as Skip-Opt and Skip-Opt+Fusion, respectively.

0

5

10

15

20

25

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

F
u
si

o
n

D
ec

o
m

p
o
se

d

S
k

ip
-O

p
t

S
k
ip

-O
p
t+

F
u

si
o
n

D
ec

o
m

p
o
se

d

S
k

ip
-O

p
t

S
k
ip

-O
p
t+

F
u

si
o
n

D
ec

o
m

p
o
se

d

S
k

ip
-O

p
t

S
k
ip

-O
p
t+

F
u

si
o
n

D
ec

o
m

p
o
se

d

S
k

ip
-O

p
t

S
k
ip

-O
p
t+

F
u

si
o
n

D
ec

o
m

p
o
se

d

S
k

ip
-O

p
t

S
k
ip

-O
p
t+

F
u

si
o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

In
fe

re
n
ce

 T
im

e
(m

s)

CPU Time (ms)

GPU Time (ms)

125

0

100

75

50

25

(a) Batch size 4

0

10

20

30

40

50

D
ec

o
m

p
o
se

d

F
u

si
o
n

D
ec

o
m

p
o
se

d

F
u

si
o
n

D
ec

o
m

p
o
se

d

F
u

si
o
n

D
ec

o
m

p
o
se

d

F
u

si
o
n

D
ec

o
m

p
o
se

d

F
u

si
o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

D
ec

o
m

p
o
se

d

S
k
ip

-O
p
t

S
k
ip

-O
p

t+
F

u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

In
fe

re
n
ce

 T
im

e
(m

s)

CPU Time (ms)

GPU Time (ms)

500

0

400

300

200

100

O
u
t

o
f

M
em

o
ry

861

(b) Batch size 32

Figure 11: End-to-end inference time of the 10 models

4.2 Peak Memory Usage
Thisworkmeasures the peakmemory usage of end-to-end inference
of 10 models with 4-batch inference. Figure 10 shows the peak
memory usage by weight and internal tensors.

Compared to the original model, this work reduces memory
usage of internal tensors by 75.7% in geomean. For AlexNet and
VGG, TeMCO fully benefits from activation layer fusion, reducing
memory usage of internal tensors by 49.4% and 90.7%, respectively.
For ResNet, TeMCO reduces memory usage of internal tensors by
30.7% because ResNet has deep-depth skip connections, inducing a
high amount of computations to copy restore layers. To alleviate
this effect, skip connection optimization selectively optimizes the
skip connections based on the overhead comparison. On the other
hand, DenseNet reduces 54.0% of internal tensor size because it
has numerous skip connections. UNet has an hourglass structure
with skip connections, so TeMCO reduces 79.3% the memory usage
of internal tensors. For DenseNet and UNet, the skip connection
optimization copies the restore layers, the layer transformation
merges the lconv, and the layer fusion finally generates a fused
kernel. Merging lconv requires more memory space for weights but

TeMCO: Tensor Memory Compiler Optimization across Tensor Decompositions ICPP ’24, August 12–15, 2024, Gotland, Sweden

0%

20%

40%

60%

80%

100%
D

ec
o

m
p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

D
ec

o
m

p
o

se
d

S
k
ip

-O
p
t

S
k
ip

-O
p
t+

F
u
si

o
n

alex 11 13 16 19 50 121 169 201

net vgg resnet densenet unet

T
o

p
-5

 a
cc

u
ra

cy
 (

%
)

D
ic

e
sc

o
re

 (
%

)

Figure 12: Accuracy of 10 model’s inference

reduces the total peak memory usage by reducing the number of
fused kernels. Consequently, TeMCO allows the reduction of the
internal tensor sizes and avoids the out-of-memory problem for
complex deep learning architectures.

4.3 Inference Time
Figure 11 shows the end-to-end inference of the 10 models with
CPU and GPU time. The inference time of the optimized models is
1.08× and 1.70× longer than the decomposed models in batch size
4 and 32, respectively.

For AlexNet and VGG, activation layer fusion reduces CPU over-
heads because the number of layer calls is reduced. Since the fused
kernel performs tiled operations for large inputs, the GPU over-
heads of the fused kernels increase as the batch size increases. As
the depth of the model increases, the model has more fused ker-
nels, causing more computational overheads. For DenseNet and
UNet, skip connection optimization causes CPU overheads because
it copies restore operations, increasing the number of layer calls.
Layer fusion and transformation reduce CPU overheads by reduc-
ing the number of layer calls, but GPU overheads increase as batch
size and model depth increase.

4.4 Accuracy
Figure 12 shows top-5 accuracy for AlexNet, VGG, ResNet, DenseNet,
and dice score [36] for UNet. The compiler optimizations of TeMCO
do not drop the accuracy of decomposed models because they pre-
serve the original semantics of the models. This work applies de-
compositions with a decomposition ratio of 0.1 and performs direct
training for this evaluation. Previous work [42, 45] proposes train-
ing schemes for decomposed models for high accuracy. If a tensor
decomposition scheme provides a pre-trained decomposed model,
TeMCO can reduce the peak memory usage by internal tensors
while preserving their accuracy.

5 RELATEDWORK
Tensor decomposition:Most tensor decomposition methods on
deep learning models aim to achieve speedups and reduce computa-
tional costs while maintaining the accuracy drops in the tolerance
range. Prior work employs rank-1 expansion [13], SVD [20, 38],

CP decomposition [10, 18], Tucker decomposition [42, 44], Tensor-
Train (TT) decomposition [24, 26, 28], and Tensor-Ring (TR) decom-
position [46] to convolutions. While the previous work focuses on
leveraging accuracy and speedup trade-offs using tensor decomposi-
tion methods, this work reduces memory usage by internal tensors
of decomposed model inference. Furthermore, TeMCO’s optimiza-
tion schemes are applicable to decomposition methods [10, 28, 39]
that decompose convolutions into 2-dimensional factor matrices
and core convolutions.

Internal tensors memory usage reduction: Previous work [4,
15, 48] proposes methods to reduce memory usage of deep learning
devices through kernel division. These proposed methods divide
layers into iterations of sub-operations and merge the results of the
sub-operations into one. In this way, the methods overcome the
limits of scratchpad memory on accelerators. This work will im-
prove the performance of fused kernels by applying these methods
and generalizing the implementation to CPU and accelerators.

Previous work [19, 31, 50] proposes layer scheduling to mini-
mize memory usage. The layer scheduling affects the peak memory
usage of internal tensors because the liveness of tensors depends
on the execution order of the operations. The compiler of this work
performs skip connection optimizations and reorders the execution
scheduling of the layers. This work can further reduce memory
usage by finding optimal execution scheduling from previous work.

Internal tensor compression is also discussed in the field of deep
learning training. Previous work [5, 14] proposes compressed train-
ing schemes that compress internal tensors between inference and
weight updates. However, the compressed internal tensors should
be decompressed to apply weight updates or further operations, and
then the memory usage peaks when performing these operations.
On the other hand, the fusion scheme of this work provides fused
kernels that perform computations with reduced tensors without
restoring them. The skip connection optimization of this work can
be extended to training the decomposed models to reduce memory
usage by long-lived internal tensors.

6 CONCLUSION
This work proposes tensor memory compiler optimization schemes
called TeMCO that reduce the memory usage of internal tensors in
decomposed model inference. TeMCO replaces skip connections
with reduced tensors by applying static analysis and copying pre-
decessor restore operations. TeMCO also fuses decomposed factor
matrix convolutions and non-decomposed activations to perform
computations with the reduced tensors without restoring them.
This work shows that the prototype compiler reduces memory us-
age of internal tensors by 75.7% for 10 decomposed models of 5
deep learning architectures.

ACKNOWLEDGMENTS
We thank the CoreLab members for their support and feedback
during this work. We also thank the anonymous reviewers for their
insightful comments and suggestions. This work is supported by
No. RS-2024-00358765, No. RS-2020-II201361, No. RS-2022-II220050,
No. RS-2023-00277060, and No. RS-2024-00395134 funded by
the Ministry of Science and ICT. This work is also supported by
Samsung Electronics. (Corresponding author: Hanjun Kim)

ICPP ’24, August 12–15, 2024, Gotland, Sweden Song et al.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283.

[2] A. F. Agarap. 2018. Deep Learning using Rectified Linear Units (ReLU). CoRR
(2018). arXiv:1803.08375

[3] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer CNN accelera-
tors. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–12.

[4] A. Artemev, Y. An, T. Roeder, and M. van der Wilk. 2022. Memory safe computa-
tions with XLA compiler. In Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.).

[5] J. Chen, L. Zheng, Z. Yao, D. Wang, I. Stoica, M. Mahoney, and J. Gonzalez. 2021.
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed
Training. In Proceedings of the 38th International Conference on Machine Learning,
M. Meila and T. Zhang (Eds.). 1803–1813.

[6] J. Cho and B. Hariharan. 2019. On the Efficacy of Knowledge Distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

[7] S. Elfwing, E. Uchibe, and K. Doya. 2018. Sigmoid-weighted linear units for neural
network function approximation in reinforcement learning. Neural Networks
(2018), 3–11.

[8] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[9] Y. He, X. Zhang, and J. Sun. 2017. Channel Pruning for Accelerating Very Deep
Neural Networks. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV).

[10] F. Hitchcock. 1927. The Expression of a Tensor or a Polyadic as a Sum of Products.
Journal of Mathematics and Physics (1927), 164–189.

[11] G. Huang, Z. Liu, L. van der Maaten, and K. Weinberger. 2017. Densely Connected
Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[12] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D.
Kalenichenko. 2018. Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[13] M. Jaderberg, A. Vedaldi, and A.Zisserman. 2014. Speeding up Convolutional
Neural Networks with Low Rank Expansions. arXiv:1405.3866 [cs.CV]

[14] S. Jin, C. Zhang, X. Jiang, Y. Feng, H. Guan, G. Li, S. Song, and D. Tao. 2021.
COMET: a novel memory-efficient deep learning training framework by using
error-bounded lossy compression. Proc. VLDB Endow. (2021), 886–899.

[15] A. Khan, N. Rink, F. Hameed, and J. Castrillon. 2019. Optimizing tensor contrac-
tions for embedded devices with racetrackmemory scratch-pads. In Proceedings of
the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems. 5–18.

[16] H. Kim, M. Khan, and C. Kyung. 2019. Efficient Neural Network Compression. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[17] A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information Pro-
cessing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (Eds.).

[18] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. 2015. Speeding-
up Convolutional Neural Networks Using Fine-tuned CP-Decomposition.
arXiv:1412.6553 [cs.CV]

[19] J. Lee, S. Jeong, S. Song, K. Kim, H. Choi, Y. Kim, and H. Kim. 2023. Occamy:
Memory-efficient GPU Compiler for DNN Inference. In 2023 60th ACM/IEEE
Design Automation Conference (DAC). IEEE, 1–6.

[20] L. Liebenwein, A. Maalouf, D. Feldman, and D. Rus. 2021. Compressing neural
networks: Towards determining the optimal layer-wise decomposition. Advances
in Neural Information Processing Systems, 5328–5344.

[21] D. Lin, S. Talathi, and S. Annapureddy. 2016. Fixed Point Quantization of Deep
Convolutional Networks. In Proceedings of The 33rd International Conference on
Machine Learning.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. 2017. Learning Efficient
Convolutional Networks Through Network Slimming. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

[23] J. Luo, J. Wu, and W. Lin. 2017. ThiNet: A Filter Level Pruning Method for Deep
Neural Network Compression. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

[24] F. Meng, Y. Wu, Z. Zhang, and W. Lu. 2024. TT-CIM: Tensor Train Decomposi-
tion for Neural Network in RRAM-Based Compute-in-Memory Systems. IEEE
Transactions on Circuits and Systems I: Regular Papers (2024), 1172–1183.

[25] S. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh.
2020. Improved Knowledge Distillation via Teacher Assistant. Proceedings of the
AAAI Conference on Artificial Intelligence (2020).

[26] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. 2015. Tensorizing Neu-
ral Networks. In Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.).

[27] NVIDIA. 2024. NVIDIA CuDNN. https://developer.nvidia.com/cudnn.
[28] I. Oseledets. 2011. Tensor-Train Decomposition. SIAM Journal on Scientific

Computing (2011), 2295–2317.
[29] Y. Pan, J. Xu, M. Wang, J. Ye, F. Wang, K. Bai, and Z. Xu. 2019. Compressing

Recurrent Neural Networks with Tensor Ring for Action Recognition. Proceedings
of the AAAI Conference on Artificial Intelligence (2019), 4683–4690.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, Lu Fang, J. Bai, and S. Chintala. 2019. PyTorch:
an imperative style, high-performance deep learning library. In Proceedings of the
33rd International Conference on Neural Information Processing Systems. Curran
Associates Inc., 8026–8037.

[31] Y. Pisarchyk and J. Lee. 2020. Efficient Memory Management for Deep Neural
Net Inference. arXiv:2001.03288 [cs.LG]

[32] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. Keckler. 2016. vDNN: virtu-
alized deep neural networks for scalable, memory-efficient neural network design.
In The 49th Annual IEEE/ACM International Symposium on Microarchitecture.

[33] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. 2022. High-
Resolution Image Synthesis With Latent Diffusion Models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
10684–10695.

[34] O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks
for Biomedical Image Segmentation. In Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. Wells, and
A. Frangi (Eds.). 234–241.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV) (2015), 211–252.

[36] B. Shaler, DanGill, Maggie, M. McDonald, Patricia, and W. Cukierski. 2017. Car-
vana Image Masking Challenge. https://kaggle.com/competitions/carvana-
image-masking-challenge

[37] K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun (Eds.).

[38] C. Tai, T. Xiao, Yi Zhang, X. Wang, and Weinan E. 2016. Convolutional neural
networks with low-rank regularization. arXiv:1511.06067 [cs.LG]

[39] L. Tucker. 1966. Some mathematical notes on three-mode factor analysis. Psy-
chometrika (1966), 279–311.

[40] F. Tung and G. Mori. 2019. Similarity-Preserving Knowledge Distillation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

[41] K.Wang, Z. Liu, Y. Lin, Ji Lin, and S. Han. 2019. HAQ:Hardware-Aware Automated
Quantization With Mixed Precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

[42] L. Xiang, M. Yin, C. Zhang, A. Sukumaran-Rajam, P. Sadayappan, B. Yuan, and
D. Tao. 2023. TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-
Aware Tucker Decomposition. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming. 260–273.

[43] Y. Yang, D. Krompass, and V. Tresp. 2017. Tensor-Train Recurrent Neural Net-
works for Video Classification. In Proceedings of the 34th International Conference
on Machine Learning, Doina Precup and Yee Whye Teh (Eds.).

[44] M. Yin, H. Phan, X. Zang, S. Liao, and B. Yuan. 2022. BATUDE: Budget-Aware
Neural Network Compression Based on Tucker Decomposition. Proceedings of
the AAAI Conference on Artificial Intelligence (2022), 8874–8882.

[45] M. Yin, Y. Sui, S. Liao, and B. Yuan. 2021. Towards Efficient Tensor Decomposition-
Based DNN Model Compression With Optimization Framework. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
10674–10683.

[46] L. Yuan, C. Li, D. Mandic, J. Cao, and Q. Zhao. 2019. Tensor Ring Decomposition
with Rank Minimization on Latent Space: An Efficient Approach for Tensor
Completion. Proceedings of the AAAI Conference on Artificial Intelligence (2019),
9151–9158.

[47] B. Zhao, Q. Cui, R. Song, Y. Qiu, and J. Liang. 2022. Decoupled Knowledge
Distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 11953–11962.

[48] H. Zheng, Y. Liu, C. Hsu, and T. Yeh. 2024. StreamNet: Memory-Efficient Stream-
ing Tiny Deep Learning Inference on the Microcontroller. Advances in Neural
Information Processing Systems 36.

[49] C. Zhu, S. Han, H. Mao, and W. J. Dally. 2017. Trained Ternary Quantization. In
International Conference on Learning Representations.

[50] L. Zhu, L. Hu, Ji Lin, W. Chen, W. Wang, C. Gan, and S. Han. 2023. PockEngine:
Sparse and Efficient Fine-tuning in a Pocket. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture. 1381–1394.

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1412.6553
https://developer.nvidia.com/cudnn
https://arxiv.org/abs/2001.03288
https://kaggle.com/competitions/carvana-image-masking-challenge
https://kaggle.com/competitions/carvana-image-masking-challenge
https://arxiv.org/abs/1511.06067

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Tensor Decomposition
	2.2 Peak Memory Usage Analysis
	2.3 Motivation

	3 Design and Implementation
	3.1 Skip Connection Optimization
	3.2 Activation Layer Fusion
	3.3 Layer Transformation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Peak Memory Usage
	4.3 Inference Time
	4.4 Accuracy

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

