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Abstract—This work proposes Occamy, a new memory-efficient DNN
compiler that reduces the memory usage of a DNN model without affecting
its accuracy. For each DNN operation, Occamy analyzes the dimensions of
input and output tensors, and their liveness within the operation. Across
all the operations, Occamy analyzes liveness of all the tensors, generates
a memory pool after calculating the maximum required memory size,
and schedules when and where to place each tensor in the memory pool.
Compared to PyTorch, on an integrated embedded GPU for six DNNs,
Occamy reduces the memory usage by 34.6% and achieves a geometric
mean speedup of 1.25×.

I. INTRODUCTION

Deep Neural Networks (DNNs) are becoming deeper and wider
to achieve higher accuracy, but require larger GPU memory capacity.
Demanding larger GPU memory sizes makes it difficult to execute
state-of-the-art DNNs on various GPU-equipped systems, especially
on embedded devices having limited GPU memory sizes. With the
advance of DNN technology, each DNN model becomes deeper
and wider and achieves higher accuracy. The higher accuracy of
a DNN model enlarges its application to various fields such as image
classification, object detection, super-resolution and natural language
processing. However, the deeper and wider DNN models require
additional memory space and thus limit affordable GPU devices. For
example, PyTorch [1] requires 24 GB of memory space to execute an
SRGAN model for the image super-resolution that commodity GPU
devices can barely or hardly support. This memory starvation problem
becomes severe especially for embedded devices, which have limited
memory spaces like 16 GB memory of Jetson AGX Xavier [2].

To relieve the memory burden on a GPU, various optimization
techniques such as memory offloading [3, 4, 5, 6], recomputation [4,
6], tensor decomposition [6] and model compression [7] have been
proposed. Still, their schemes are limited to DNN training or require
for programmers to change the DNN model affecting its accuracy.
Since DNN training consists of two steps, a forward and backward
process, the backward process requires intermediate results generated
by the forward process. Memory offloading creates a memory pool
by combining CPU and GPU memories and keeps the intermediate
results at the CPU memory as cold data. However, unlike DNN
training, DNN inference consists of only the forward process with
few cold data and can be executed on an integrated GPU that shares
memory with a CPU, so the memory offloading schemes are not
effective. Recomputation [4, 6], tensor decomposition [6] and model
compression [7] reduce the required memory size by recomputing the
intermediate results of some light-weight layers instead of keeping
them, by decomposing a large tensor into smaller tensors, and by
reducing computation or data precision, but they change the DNN
model and affect its accuracy.

Moreover, memory management operations dramatically affect the
DNN inference latency. Fig. 1 shows that allocating and deallocating
tensors take one-third to half of the entire latency for ResNet50
and YOLOv1 on a discrete GPU (NVIDIA Titan RTX), while their
computation takes only 20 to 25 % of the entire latency. Moreover,
when to allocate and deallocate tensors affects the overall latency.
Fig. 2 shows that eagerly allocating all the tensors together at the

beginning (Fig. 2a) reduces the overall latency of ResNet50 from
27.1 ms to 21.9 ms compared to the lazy allocation that allocates
tensors when they are necessary (Fig. 2b). Thus, memory management
optimization is crucial not only to reduce the required memory size
but also to reduce the DNN inference latency.

Existing DNN frameworks such as PyTorch [1] and TensorFlow Lite
Micro [8] reduce the memory allocation and deallocation overheads
with the eager memory allocation and a memory pool, but their
schemes do not optimize the required memory size. Although PyTorch
allocates all the tensors used in a DNN model at the beginning and
reduces the memory allocation latency, the tensors are allocated earlier
than when they are used, requiring additional unnecessary memory
spaces. For example, the gray area in Fig. 2a is the time period
from when a tensor is allocated and when the tensor is used for the
first time, showing the unnecessarily allocated tensors. Compared to
the laze allocation scheme in Fig. 2b, the eager allocation scheme
wastes huge memory spaces to reduce memory allocation latency.
Instead of allocating and deallocating a memory space, TensorFlow
Lite Micro [8] and TASO [9] reuse allocated memory spaces with a
memory pool. Although the memory pool schemes reduce the memory
allocation and deallocation latency while not increasing the required
memory size, the memory pool suffers from fragmentation problems
because the schemes allocate tensors in their memory pool within
reflecting tensors used in succeeding layers. Therefore, a new memory
management scheme that can reflect the entire DNN model is required.

This work proposes Occamy, a new memory-efficient GPU compiler
for DNN inference. Occamy analyzes dimensions of input and output
tensors for each DNN operation, and their liveness within the operation.
If the liveness results of two tensors are not overlapped within the
same operation, Occamy makes the two tensors share the same
memory space (tensor coalescing). Occamy fuses two DNN operations
into another operation if possible, and reduces memory operations
between the operations (layer fusion). Then, Occamy analyzes memory
access patterns of all the tensors based on the liveness analysis
results, calculates the maximum required memory size for the entire
DNN model, and generates a memory pool with the maximum size
(memory access pattern analysis). Finally, Occamy schedules when and
where to place each tensor in the memory pool, and inserts memory
management instructions, so each DNN model can efficiently use the
memory pool without suffering from the fragmentation problem.

This work implements Occamy on the top of the MLIR compiler
framework [10] by extending the ONNX-MLIR compiler project [11].
This work extends the CPU-based original ONNX-MLIR compiler
to support GPUs and evaluates Occamy with the six DNN inference
models such as ResNet50 [12], MobileNet [13], SDD-ResNet50 [14],
BERT [15], YOLOv1 [16], and SRGAN [17] using an integrated
GPU system (Jeston AGX Xavier [2]) and a discrete GPU system
(NVIDIA GeForce RTX 3090 with 24GB memory and Inter® Core™

i7-8700). Compared to PyTorch with JetPack SDK and PyTorch,
Occamy reduces memory usage by 31.2% and 37.7% and achieves
geomean speedups of 1.29 and 1.21 times on the integrated GPU and
the discrete GPU systems.
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Fig. 1: The execution time of memory and computation operations of
ResNet50 and YOLO.
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Fig. 2: Liveness of tensors in ResNet50 for the eager and lazy memory
allocation schemes. The gray area means the period when a tensor is
allocated but not yet used, and the black area means the period when
the tensor is actually used.

II. MOTIVATION

Dynamic memory allocation on a GPU easily becomes a bottleneck
of a SIMD/SIMT application [18, 19, 20]. To allocate virtual memory
and to map the virtual page to its corresponding physical memory page
on a GPU, the dynamic memory allocation requires OS system calls.
Moreover, to provide consistency of the memory (de)allocation, the
OS protects the memory (de)allocation with synchronization primitives
(e.g., mutex). To enable concurrent allocations and deallocations of
multiple applications, synchronization primitives (e.g., mutex) protect
memory (de)allocation calls and provide consistency of the memory
(de)allocations. Because the (de)allocations are atomic, concurrent
invocations on memory (de)allocations can cause contention and
synchronization overheads [18].

This work analyzes the dynamic memory (de)allocation overheads
in a DNN inference model by measuring the execution time of memory
management and computation operations for ResNet50 and YOLO
on a discrete GPU (NVIDIA Titan RTX). As Fig. 1 illustrates, the
memory allocation and deallocation take one-third to half of the
entire latency, while their computation takes only 20% to 25% of
the entire latency. Unlike the memory copy overhead that can be
hidden by the asynchronous copy and unified memory schemes [21,
22, 23, 24], the memory (de)allocation cannot be hidden because of
the synchronization primitives.

To relieve the memory allocation overheads, widely-used DNN
frameworks such as PyTorch [1] eagerly allocate all the tensors to
the GPU memory at the beginning of a DNN model. For example,
PyTorch allocates the GPU memory spaces for each tensor, copies all
required tensors to the memory, and executes layers using the cached
tensors. This eager memory allocation can reduce the inference time
from 27.1 ms to 21.9 ms (Fig. 2) because there is no OS intervention
or a synchronization point caused by memory (de)allocation during the
layer execution. However, eagerly allocating all the tensors requires
a large amount of the GPU memory space to hold a whole DNN
model and sometimes fails to run the model in a GPU. For example,
PyTorch requires 24 GB of GPU memory to execute SRGAN [17],
but Jetson AGX Javier has only 16 GB of the unified memory, which
is not enough to run SRGAN model.

On the other hand, the on-demand (lazy) memory allocation can

reduce the memory footprints of DNN models as shown in Fig. 2b.
The lazy memory allocation scheme allocates only required tensors
to the GPU memory before executing each layer and frees them after
the layer. Since only the tensors used in each layer occupy the GPU
memory, the scheme minimizes the GPU memory usage. However,
the lazy memory allocation degrades the inference time because of
frequent system calls and synchronization caused by (de)allocations.

Recent works [3, 4, 25] propose runtime systems that trace tensor
memory access patterns to prefetch and evict the tensors on the training
phase efficiently. However, tracking memory access patterns at runtime
causes the profiling overhead. While the profiling is effective for
DNN training which repeatedly executes DNN models in forward and
backward ways, it is not suitable for DNN inference which executes
DNN models once.

To reduce the required memory size and the DNN inference time,
a new smart memory management scheme is necessary. The eager
memory allocation scheme reduces the inference time at the expense
of the additional GPU memory space. On the other hand, the lazy
memory allocation scheme minimizes the required memory size but
is slow due to frequent system calls and synchronization. To exploit
the strengths of the both schemes, it is necessary to allocate the
minimal memory space at the beginning and reuse them throughout
the entire inference, thus avoiding the system call and synchronization
overheads. Moreover, since the size of tensors is fixed at each DNN
model, the lifetime of each tensor and the minimal required memory
space can be statically calculated at the compile time without causing
runtime overhead.

III. DESIGN OF THE OCCAMY COMPILER

This work proposes Occamy, a new memory-efficient DNN compiler.
Fig. 3 illustrates the overall compilation process of Occamy. Occamy
transforms an input DNN model described in the ONNX model
into its corresponding DNN library invocations with GPU memory
management instructions written in LLVM IR. Occamy consists of
three important optimization steps. First, Occamy analyzes the liveness
of tensors and converts the DNN model in ONNX IR into DNN IR
code with memory management instructions (§III-A). Second, Occamy
optimizes the DNN IR code at the operation level, such as kernel fusion
that eliminates inefficient tensor reloads between layers, and tensor
coalescing that reuses memory spaces for input and output tensors
by coalescing them (§III-B). Third, Occamy analyzes the memory
access patterns of tensors, calculates the maximum memory usage,
and generates a memory pool with memory management instructions
(§III-C). With the static memory pattern analysis and the memory pool,
Occamy can reduce the maximum memory usage like the lazy memory
allocation without suffering from system call and synchronization
overheads from (de)allocation like the eager memory allocation. After
finishing three optimization steps, Occamy converts the DNN IR code
to the LLVM IR code, and generates an executable DNN binary.

A. Liveness-aware Memory Operation Insertion

Occamy first analyzes the liveness and dimensions of all the tensors
in a DNN model, and inserts memory management operations such
as allocation, deallocation and copy to allow succeeding optimization
steps to explicitly manipulate the operations. Here, Occamy adopts
the lazy memory allocation scheme for further optimization.

Tensor Liveness Analyzer. Occamy analyzes the liveness of each
tensor and stores the result as a table. The liveness table consists of
the first-use and last-use indices of each tensor, and their memory
sizes. Occamy will use the memory size to analyze the detailed
memory usage patterns and to calculate the size of a memory pool.



DNN Model

CPU h_A h_B h_C h_D h_E h_F h_G
begin 0 1 2 3 4 5 6

end 3 3 3 4 6 6 6

size 768 540 20 720 720 720 720

Tensor Liveness Analyzer

0  h_A = INPUT
1  d_A = DNN.Malloc(768)
2  t0  = DNN.Memcpy(d_A,h_A) {H->D}
3  d_B = onnx.Constant()
4  h_B = DNN.Malloc(540)
5  t1  = DNN.Memcpy(d_D,h_D) {H->D}
6  h_C = onnx.Constant()
7  d_C = DNN.Malloc(20)
8  t2  = DNN.Memcpy(d_C,h_C) {H->D}
9  d_D = DNN.Malloc(720)

10  t3  = DNN.Conv(d_A,d_B,d_C,d_D)
11  t4  = DNN.Dealloc(d_A)
12  t5  = DNN.Dealloc(d_B)
13  t6  = DNN.Dealloc(d_C)
14  d_E = DNN.Malloc(720)
15  t7  = DNN.Relu(d_D,d_E)
16  t8  = DNN.Dealloc(d_D)
17  h_F = onnx.Constant()
18  d_F = DNN.Malloc(720)
19  t9  = DNN.Memcpy(d_F,h_F) {H->D}
20  d_G = DNN.Malloc(720)
21  t10 = DNN.Add(d_E,d_F,d_G)
22  t11 = DNN.Dealloc(d_E) 
23  t12 = DNN.Dealloc(d_F)
24  h_G = DNN.Host-malloc()
25  t13 = DNN.Memcpy(h_G,d_G) {D->H}
26  t14 = DNN.Dealloc(d_G)

Operation-level Optimizer
Layer fuser Tensor coalescer

0  h_A = INPUT
1  d_P = DNN.Pool-init(2048)
2  d_A = DNN.Mem-offset(d_P,0,768)
3  t0  = DNN.Memcpy(d_A,h_A) {H->D}
4  h_B = onnx.Constant()
5  d_B = DNN.Mem-offset(d_P,768,540)
6  t1  = DNN.Memcpy(d_B,h_B) {H->D}
7  h_C = onnx.Constant()
8  d_C = DNN.Mem-offset(d_P,1308,20)
9  t2  = DNN.Memcpy(d_C,h_C) {H->D}

10  d_D = DNN.Mem-offset(d_P,1328,720)
11  t3  = DNN.Conv-relu(d_A,d_B,d_C,d_D)
12  h_F = onnx.Constant()
13  d_F = DNN.Mem-offset(d_P,0,720)
14  t4  = DNN.Memcpy(d_F,h_F) {H->D}
15  t5  = DNN.Add(d_D,d_F,d_D)
16  h_G = DNN.Host-malloc()
17  t6  = DNN.Memcpy(h_G,d_D) {D->H}
18  t7  = DNN.Dealloc(d_D)

0  h_A = INPUT
1  d_A = DNN.Malloc(768)
2  t0  = DNN.Memcpy(d_A,h_A) {H->D}
3  h_B = onnx.Constant()
4  d_B = DNN.Malloc(540)
5  t1  = DNN.Memcpy(d_B,h_B) {H->D}
6  h_C = onnx.Constant()
7  d_C = DNN.Malloc(20)
8  t2  = DNN.Memcpy(d_C,h_C) {H->D}
9  d_D = DNN.Malloc(720)

10  t3  = DNN.Conv-relu(d_A,d_B,d_C,d_D)
11  t4  = DNN.Dealloc(d_A)
12  t5  = DNN.Dealloc(d_B)
13  t6  = DNN.Dealloc(d_C)
14  h_F = onnx.Constant()
15  d_F = DNN.Malloc(720)
16  t7  = DNN.Memcpy(d_F,h_F) {H->D}
17  t8  = DNN.Add(d_D,d_F,d_D)
18  t9  = DNN.Dealloc(d_F)
19  h_G = DNN.Host-malloc()
20  t10 = DNN.Memcpy(h_G,d_D) {D->H}
21  t11 = DNN.Dealloc(d_D)

LLVM IR

Global-level Optimizer
Memory access pattern analyzer

Memory pool code generator

GPU d_A d_B d_C d_D d_E d_F d_G
first 1 3 7 9 14 18 20

last 10 10 10 15 21 21 25

size 768 540 20 720 720 720 720

GPU d_A d_B d_C d_D d_E d_F d_G
first 1 4 7 9 - 15 -

last 10 10 10 20 - 17 -

size 768 540 20 720 0 720 0

0  h_A = INPUT
1  h_B = onnx.Constant()
2  h_C = onnx.Constant()
3  h_D = onnx.Conv(h_A,h_B,h_C)
4  h_E = onnx.Relu(h_D)
5  h_F = onnx.Constant()
6  h_G = onnx.Add(h_E,h_F)

IR 0: ONNX IR (Isomorphic to ONNX model)

Liveness Table 0: Variables in ONNX IR

Liveness Table 1: Initial liveness of GPU tensorsIR 1: After adding the GPU memory operations

ONNX IR to DNN IR Converter Memory manager Op converter

IR 2: After applying operation-level optimizations

Liveness Table 2: After operation-level optimizer

IR 3: After generating the memory pool codes

Fig. 3: Overall compilation flow of the Occamy compiler.

Algorithm 1 shows how Occamy analyzes the liveness of tensors in
the input operator list. For each operator, the liveness analyzer updates
the last use of each operand (line 3 to line 5). Then, the analyzer
generates a new table entry for the operator and update member of
entries such as first-use, last-use, and size (line 6 to line 8). Liveness
Table 0 of Fig. 3 shows an example of a liveness table generated by
the tensor liveness analyzer. For example, variable h_A is defined in
line 0 of the ONNX IR, and the last use of variable h_A is depicted
in line 3. Therefore, the liveness of variable h_A begins in line 0 and
ends in line 3, shown in the result table.

ONNX IR to DNN IR Converter. Based on the liveness analysis
result, the ONNX IR to DNN IR converter inserts memory manage-
ment operators, and changes ONNX operations to DNN operations
that explicitly denote memory spaces for input and output tensors.
Occamy inserts GPU memory allocation and deallocation operators
for each tensor after the definition and the last use, respectively. To

Algorithm 1: Tensor Liveness Analyzer
Input: opList: Operator lists of DNN inference model
Output: LA: Liveness table recording begin, end, and size of

variables
1 Function LivenessAnalysis (LA, opList) :
2 for op ∈ opList do
3 for operand ∈ op.operands do
4 LA[operand].end ← op
5 end
6 LA[op].begin ← op // op returns a new tensor
7 LA[op].end ← op
8 LA[op].size ← op.size // computed from dimension
9 end

10 return LA
11 end

copy the predefined input, weight and bias values from CPU to GPU,
Occamy inserts memory copy operators after their memory allocation
operators like line 2 of IR 1 of Fig. 3. Occamy also inserts memory
copy operators to copy the final output data from GPU to CPU like
line 25 of IR 1 of Fig. 3. Occamy transfers only the final output data to
CPU instead of every intermediate result, thus reducing communication
overheads between CPU and GPU. Finally, the converter transforms
DNN operators of ONNX IR such as ONNX.conv to corresponding
DNN IR operators such as DNN.conv for further optimizations.

B. Operation-level Optimizer

Occamy adopts two operation-level optimizations to reduce memory
usage based on the domain specific knowledge on DNN operations.

Layer Fusion. Occamy fuses layers to eliminate inefficient memory
reloads between the layers. Occamy investigates consecutive DNN
operators, and then substitutes the operators into one fused operator
if the pattern is matched. For example, IR 2 in Fig. 3 shows
the DNN.Conv-relu operator in line 10 that is substituted from
DNN.Conv and DNN.relu in IR 1. Note that some intermediate
tensors can be used in other operators, so Occamy applies this
optimization when the intermediate tensors are not live-out at the
fused operator.

Tensor Coalescer. Occamy coalesces input and output tensors to
share their memory spaces in the elementwise operations such as
arithmetic operators. The elementwise operators can use the same
memory space for input and output because each thread independently
accesses each element. For example, Occamy converts the DNN.add
operator using the same input and output memory space d_D in line
17 of IR 2. Here, Occamy applies this optimization when its input
tensor is not used later (not live-out at the operator).

C. Global-level Optimizer

Global-level optimization generates a memory-efficient code using a
memory pool technique. Occamy analyzes the memory access patterns
as a perspective of the entire DNN model, not confined by independent
operators. Occamy analyzes the liveness and size of the entire memory
object, then decides offsets of each memory object at the memory
pool. Since Occamy can analyze end-to-end memory operation in
contrast to the existing work using runtime memory adaptor, Occamy
can adjust better memory schedule than the runtime memory adaptor.

Memory Access Pattern Analyzer. To efficiently support different
access patterns, Occamy adopts multiple memory scheduling algo-
rithms, and finds the optimal memory pool size. This memory access
pattern analyzer uses four different memory scheduling algorithms
such as first-fit, best-fit, longer-first-fit, and bigger-first-fit. For example,



Algorithm 2: Bigger-first-fit memory allocation algorithm
Input : liveTable : Tensor set of liveness
Output : MemLoc : Memory location set of tensors

PSize : Size of memory pool
1 Function BiggerFirstScheduler (liveTable, MemLoc, PSize) :
2 schedule ← {}
3 desendingOrderSort (liveTable, ”size”)
4 for var ∈ liveTable do
5 loc ← getStartLoc (schedule, var, ”first-fit”)
6 region ← {loc, loc+ var.size}
7 schedule.insertRegion (region, var.begin, var.end)
8 MemLoc.insert({var, loc})
9 end

10 end

ResNet50 and SSD-ResNet50 show the smallest memory pool size
with first-fit and bigger-first-fit, respectively. Occamy performs four
scheduling algorithms iteratively and finds the best scheduling policy
for the DNN model.

• First-fit allocates the target tensor to the first available memory
hole with space equal to or larger than the target tensor while
traveling memory space from low index to high index.

• Best-fit allocates the target tensor to the smallest memory hole
that is big enough to assign the target tensor.

• Longer-first-fit allocates tensors in order of longer liveness. This
policy performs first-fit with a sorted liveness table.

• Bigger-first fit allocates tensors in order of memory size of
tensors with first-fit policy.

Algorithm 2 shows the bigger-first-fit scheduling algorithm as an
example. The scheduler receives the liveness table as an input, and
decides the size of the memory pool and a set of offsets in the
memory pool for every tensor. The Bigger-first-fit scheduler sorts the
liveness table in descending order by the tensor size (line 3). For each
tensor variable, the scheduler gets an available start location for every
timestamp based on the schedule information that has been decided
so far (line 5) and reserves the memory region for each timestamp
(line 7). Then, the scheduler collects the memory pool offset of the
variable as the output (line 8). Occamy can adjust scheduling policies
by changing the sorting algorithm.

Memory Pool Code Generator. Occamy substitutes memory
operators into memory pool operators with memory pool offsets
generated by the memory access pattern analyzer. Occamy first inserts
a memory pool init operator, which create a memory pool with the
predetermined memory pool size. Occamy changes memory allocation
operators to memory pool offset operators, assigning the variable to
a specific location in the memory pool. For example, DNN.Malloc
operators of IR 2 are substituted into DNN.Mem-offset of IR 3.
The argument of DNN.Mem-offset denotes the base address of
the memory pool, offset, and size of each variable. The memory
offset operator not only reduces memory usage but also improves
inference time because the memory offset operator eliminates the
memory allocation, which causes the synchronization overheads of
GPUs. In addition, Occamy eliminates deallocation operators and
improves inference time.

IV. EVALUATION

This section evaluates the inference time and the memory usage
of Occamy with six DNN inference models and two GPU hardware.
The first hardware environment uses an integrated GPU system,
Jeston AGX Xavier with 16GB memory and ARM v8 Rev 2
processor. The second environment uses a discrete GPU system,

DNN Model # Op # Var Eager Lazy Occamy

#MMG #Alloc #MMG #Alloc #MMG #Alloc

ResNet50 176 284 1 284 123 284 1 1
MobileNet 85 142 1 142 58 142 1 1
SSD-ResNet50 208 351 1 351 144 351 1 1
BERT 747 1120 1 1120 648 1120 1 1
YOLOv1 83 134 1 134 58 134 1 1
SRGAN 117 216 1 216 81 216 1 1

TABLE I: Number of memory management groups (MMG) and
memory allocations (Alloc) of six benchmarks. MMG means continu-
ous memory allocation operators which are not punctuated by other
computation operators.

NVIDIA GeForce RTX 3090 with 24GB memory and Intel® Core™

i7-8700. The evaluation uses six DNN inference models such as
ResNet50, MobileNet, SDD-ResNet50, BERT, YOLOv1, and SRGAN.
Benchmarks target different applications, so each benchmark has
different layer compositions and memory access patterns. ResNet50
and MobileNet are designed for image classification, and especially
MobileNet is designed for embedded systems. Both SSD-ResNet50
and YOLOv1 target object detection but use different single-shot
detection (SSD) models. BERT performs natural language processing
(NLP) with transformers, and SRGAN performs super-resolution
generative adversarial network.

The evaluation compares three different compiler implementations
to evaluate this work. To implement Occamy, this work builds
three implementations on top of the open-source compiler, ONNX-
MLIR [11], which supports generating ONNX IR isomorphic to
ONNX [26] model. Since ONNX-MLIR does not support the GPU
back-end, this work implements the GPU back-end using CUDA
Runtime API [27] and tests three implementations.

• Eager processes inference using the eagar memory allocation
• Lazy processes inference using the lazy memory allocation
• Occamy processes inference on Occamy using the memory pool
Moreover, this work compares Occamy with the state-of-the-art

PyTorch [1] using the same set of benchmarks.

A. Overall Performance

Fig. 4 shows that Occamy reduces memory usage with comparable
inference time for most benchmarks in both discrete and integrated
GPU systems. Occamy reduces 34.6% memory usage and 1.25×
speedups on the geomean average compared to PyTorch.

On the Jetson AGX Xavier, Occamy reduces 31.2% memory usage
compared to PyTorch as shown in Fig. 4a while achieving 1.29×
speedups. Note that, this evaluation uses PyTorch for Jetson [28] which
was released for Jetson embedded system to reduce memory usage
by using memory-optimized CUDA, cuDNN, and cuBLAS libraries.
Even though PyTorch adjusts specialized optimization, PyTorch shows
more memory usage due to the eager memory allocation. Especially
for BERT and YOLOv1, Occamy shows 56.3% and 50.1% memory
reduction. These two benchmarks have one big layer (embedding layer
for BERT and fully-connected layer for YOLOv1) that bounds memory
pool size and other layers can reuse that memory pool efficiently.
However, Occamy shows 3.7% memory saving for MobileNet. Since
MobileNet is a small network, the benefit of the memory pool is
concealed by the CUDA context that is used by the CUDA runtime
library in both of Occamy and PyTorch. PyTorch cannot execute
the SRGAN benchmark due to out-of-memory (OOM), but Occamy
successfully generates a memory pool and executes SRGAN on the
Jetson AGX Xavier.

On the RTX 3090, Occamy reduces 37.7% memory usage compared
to PyTorch while achieving 1.21× speedups as shown in Fig. 4c. For
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Fig. 4: Inference time and memory usage of the 6 benchmarks. The batch size is 32 for all the models on RTX3090 GPU except for SRGAN
which batch size is 2 due to the out of memory error. OOM is noted for the models unable to inference due to the out of memory error.
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(a) GPU memory usage of ResNet50
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(b) Inference time of ResNet50
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(c) GPU memory usage of YOLO
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Fig. 5: Inference time and memory usage on RTX3090 GPU. Missing
data point at the specific batch size means the out of memory error.

the discrete GPU system, this work evaluates Occamy and other
systems with batch size 32, except for the SRGAN model which
batch size is 2. Occamy shows similar inference time but reduces
memory usage on ResNet50, SSD-ResNet50, and YOLOv1 compared
to PyTorch. PyTorch allocates all the tensors at the beginning to
speed up inference, but Occamy efficiently reuses a memory pool
and reduces allocation overheads. For BERT, Occamy does not
show significant memory saving because PyTorch does not support
embedding operations on a GPU, so PyTorch runs one big embedding
table on the CPU. However, Occamy runs the embedding table on the
GPU, and allocates a memory pool of the same size as the embedding
table, so the memory pool size is slightly larger than PyTorch’s
memory usage. If PyTorch supports running the embedding table on

a GPU, the PyTorch will use more memory than Occamy.
Fig. 4 shows the efficiency of the memory pool optimization

compared to the Eager and the Lazy memory allocation. Occamy uses
only 7.3% more memory compared to the Lazy allocation and shows
1.59× speedups compared to the Eager allocation. Table I shows the
number of memory management groups (MMG) and the numbers of
memory allocation (Alloc) of six benchmarks. The Eager allocation
has one MMG because it allocates and deallocates every tensor at the
beginning and end of inference, respectively. In contrast, the Lazy
allocation causes more MMG because it allocates and deallocates
tensors just before their uses and after finishing their liveness. As a
result, the Lazy allocation has smaller maximum memory usage than
the others but shows slower inference time because of interference of
memory operations while running inference. However, Occamy has
only one MMG and one Alloc with the similar memory usage to the
Lazy allocation; this result implies that the memory pool optimization
has the advantage of both allocation schemes. In addition, Occamy
shows additional performance improvement compared to the Eager
allocations scheme by reducing the number of Alloc that causes
synchronization overheads.

B. Case Study: Batch Size Impact

Fig. 5 shows the memory usages and inference times of ResNet50
and YOLO with different batch sizes on RTX3090 GPU. Fig. 5a
and Fig. 5c show how memory usage differs with the different batch
sizes. In the case of small batch size, in which the chance of memory
reuse in the memory pool is small, PyTorch often uses less memory
space than Occamy. This is because loading CUDA API functions in
an imperative manner in PyTorch uses less memory than loading a
whole kernel function generated by Occamy. However, as the batch
size increases, the chances for Occamy to reuse the memory space
increase, and Occamy can use less memory space than PyTorch or
the Eager allocation by using a memory pool.

Fig. 5b and Fig. 5d show the impacts of batch size to the inference
time. The inference time of Occamy is slightly lower than PyTorch in
the case of the small batch size because Occamy eliminates memory
allocations that have negligible effects on performance. As the batch
size gets bigger, the memory copy overheads dominate the inference



time, so the inference time of Occamy becomes similar to the inference
time of PyTorch.

V. RELATED WORK

CPU-GPU unified memory pool for DNN. Previous work [3,
4, 25] proposes CPU-GPU unified memory pools for DNN training.
vDNN [3] virtualizes CPU and GPU memory, seamlessly prefetches
tensors to GPU memory and offloads tensors to CPU memory.
Superneurons [4] characterizes computation- and memory-intensive
layers, and offloads tensors in computation-intensive layers to the CPU
memory, so overlaps the CPU-GPU communication overheads with
the computation time. Capuchin [25] finds tensor access patterns
at runtime, and decides memory prefetch/eviction in the tensor
granularity. Compared to the previous work, Occamy analyzes the
DNN inference model at static time, so Occamy does not cause runtime
overheads to find the memory access patterns. Using the liveness
analysis results, Occamy successfully schedules tensor allocation and
deallocation timings at compile time.

Memory management schemes that reduce memory allocation
overheads. Winter et al. [18] point out that dynamic memory allocation
becomes a bottleneck of SIMD/SIMT applications. Gelado and
Garland [19] propose a dynamic GPU memory allocation scheme that
minimizes lock steps of (de)allocations with two-stage processes,
and thus enable concurrent allocations among multiple threads
without losing performance. Occamy allocates one big memory
pool, and replaces all the memory allocations to memory request
operations from the memory pool. Since Occamy eliminates all the
(de)allocation operations, Occamy successfully reduces system calls
and synchronization overheads caused by the (de)allocations.

Memory management schemes that reuse preallocated memory
spaces. [1, 8, 29, 30, 31] reuse memory spaces allocated in the
previous layers, and reduce the inference and training times and the
memory usage. PyTorch [1] allocates all the tensors at the beginning of
the program, and reduces the (de)allocation costs during the execution.
TensorFlow Lite Micro [8] implements a memory pool, but their target
devices are limited to embedded CPUs. Ji et al. [31] reuses memory
spaces for tensors in convolution layers. PyTorch [1], TensorFlow
XLA [29], MXNet [30] implements in-place operations that reuse
the same memory space for input and output tensors, and reduces
memory usages for inference and training. Like the schemes, Occamy
coalesces input and output tensors of elementwise operators to share
their memory space, and reuses memory spaces in the memory pool
that is allocated at the beginning.

VI. CONCLUSION

This work proposes a new DNN inference compiler, Occamy, which
reduces the memory usage and management overheads of a DNN
model. Occamy analyzes the liveness of input and output tensors
for DNN operations. Then, Occamy reduces redundant tensors by
fusing layers and coalescing input and output tensors. Finally, Occamy
analyzes the memory access patterns throughout the whole DNN
model based on the liveness analysis result, finds the best memory
scheduling algorithm, and generates the memory pool. Moreover,
Occamy schedules when and where to place each tensor in the memory
pool, thus reducing the memory management overheads at runtime.
Occamy reduces the memory usage by 34.5% and achieves a geomean
speedup of 1.25× compared to PyTorch on Jeston AGX Xavier for
six DNN inference models.
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