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Abstract
Thanks to the computation ability on encrypted data and the
efficient fixed-point execution, the RNS-CKKS fully homo-
morphic encryption (FHE) scheme is a promising solution
for privacy-preserving machine learning services. However,
writing an efficient RNS-CKKS program is challenging due
to its manual scale management requirement. Each cipher-
text has a scale value with its maximum scale capacity. Since
each RNS-CKKS multiplication increases the scale, program-
mers should properly rescale a ciphertext by reducing the
scale and capacity together. Existing compilers reduce the
programming burden by automatically analyzing and man-
aging the scales of ciphertexts, but they either conservatively
rescale ciphertexts and thus give up further optimization op-
portunities, or require time-consuming scale management
space exploration.

This work proposes a new performance-aware static scale
analysis for an RNS-CKKS program, which generates an
efficient scale management plan without expensive space
exploration. This work analyzes the scale budget, called “re-
serve”, of each ciphertext in a backward manner from the
end of a program and redistributes the budgets to the cipher-
texts, thus enabling performance-aware scale management.
This work also designs a new type system for the proposed
scale analysis and ensures the correctness of the analysis
result. This work achieves 41.8% performance improvement
over EVA that uses conservative static scale analysis. It also
shows similar performance improvement to exploration-
based Hecate yet with 15526× faster scale management time.
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1 Introduction
Fully homomorphic encryption (FHE) [2] allows an arbitrary
arithmetic circuit to process an encrypted input and pro-
duce its encrypted result. Once decrypted, the result is the
same as the one computed without encryption. The prop-
erty of FHE opens a new opportunity for privacy-preserving
machine learning services in privacy-sensitive fields such
as insurance, finance, and healthcare [3, 26, 39, 40, 48, 51].
Among various FHE schemes [7–9, 12–14, 18–20, 27, 29–
33], RNS-CKKS [13] supports efficient fixed-point arithmetic
and SIMD vectorization, making it well suited for privacy-
preserving machine learning applications [54]. Thus, many
recent FHE compilers [24, 25, 45] and libraries [28, 38, 52]
support RNS-CKKS.

However, RNS-CKKS imposes a new programming burden
when designing a correct and fast privacy-preserving ma-
chine learning application. RNS-CKKS stores a fixed-point
number as an integer by multiplying a scale parameter and
requires programmers to manually manage the scale𝑚 of a
ciphertext while respecting several other constraints on ci-
phertexts and arithmetic operations. Each ciphertext has the
maximum integer size, called coefficient modulus𝑄 = 𝑅𝑙 , de-
rived from encryption parameters rescaling factor 𝑅 and level
𝑙 . In this setting, each multiplication increases the scale of
its result and consumes the coefficient modulus. Because the
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depleted coefficient modulus (also known as scale overflow)
harms the correctness, programmers should rescale a cipher-
text, using rescale operation, after some multiplications
by dividing a ciphertext by the rescaling factor, reducing its
scale, level, and coefficient modulus:𝑚′ = 𝑚/𝑅, 𝑙 ′ = 𝑙 − 1,
and 𝑄 ′ = 𝑄/𝑅. Despite its increased programming burden,
RNS-CKKS allows users to manipulate ciphertext parameters
reflecting trade-off between computation noises and latency,
unlike the other schemes such as BGV and BFV.
RNS-CKKS compilers such as EVA [24] and Hecate [45]

reduce the programming burden by automatically manag-
ing the scales of ciphertexts, but they either fail to fully
optimize the performance or require time-consuming scale
management exploration. From the beginning to the end of
a program, they analyze the scale of a ciphertext and insert
scale management operations to satisfy the RNS-CKKS con-
straints. EVA aims to minimize the input coefficient modulus
𝑄 by inserting rescale operations if its rescaled scale re-
mains larger than the pre-defined minimal scale, called “wa-
terline”. In RNS-CKKS, higher levels of operand ciphertexts
incur more latency, so designing level-aware scale manage-
ment is crucial for performance. Since the level and scale
of ciphertexts are tightly coupled, its forward scale analysis
is not suitable to analyze the levels of intermediate cipher-
texts while inserting rescale operations. On the other hand,
Hecate achieves better performance than EVA by iteratively
exploring many different scale management plans. However,
its exploration-based approach cannot scale to large appli-
cations because of its long compilation time. For instance,
LeNet-5 [42] requires 14763 iterations, leading to 483 seconds
of compilation time.
This work proposes reserve analysis, a new performance-

aware backward static scale analysis for an RNS-CKKS pro-
gram. This work defines a new scale management term, re-
serve 𝑟 , as the coefficient modulus over the current scale:
𝑟 = 𝑅𝑙/𝑚, representing an available scale budget of a cipher-
text. A key property of reserve is that it is invariant over
rescale, hence simplifying the reserve analysis. Then, this
work formalizes the semantics of reserve and designs the
reserve type system to correctly manage the reserves and
efficiently analyze the latency of RNS-CKKS operations. The
reserve analysis performs backward analysis, inferring the
operand reserves from the result reserve for each operation,
and from the end to the beginning of a program. Then it al-
locates reserves while prioritizing heavy operations so that
it can aggressively reduce the level of those heavy opera-
tions. For a given reserve allocation, the rescale placement
algorithm statically analyzes the cost of different rescale
placements and finds the optimal rescale placement.

This work implements the proposed reserve type system
and analysis on the top of theMLIR [41] compiler framework.
This work evaluates the compiler with eight machine learn-
ing and deep learning applications in terms of performance
(runtime latency) and compilation time, compared to existing

RNS-CKKS compilers. This work achieves 41.8% performance
(latency) improvement compared to EVA [24] that uses for-
ward static scale analysis. This work also shows similar per-
formance improvement as exploration-based Hecate [45],
yet reduces the scale management time by 15526× and the
total compilation time by 24.44×.

This work makes the following contributions:

• A new scale management term called reserve and its
type system that decouples the scale analysis from
scale management operations;

• A new static scale analysis called reserve analysis that
analyzes reserves of each ciphertext in a backward
manner, thus enabling improved scale management;

• A new rescale placement algorithm finding an efficient
position for a rescale operation; and

• A new FHE compiler that implements exploration-free
performance-aware scale management.

2 Background on RNS-CKKS
This paper focuses on the RNS variant of CKKS (RNS-CKKS)
[13] known to be best suited for ML workloads [54], thanks
to its efficient support for (approximate) real numbers with
fixed-point arithmetic and SIMD vectorization. Other FHE
schemes such as BGV/BFV [8, 27] and GSW [34] compute
naturally on integers and boolean, and thus require sophisti-
cated, inefficient encoding procedures for real numbers [21].

2.1 RNS-CKKS Plaintexts and Ciphertexts
RNS-CKKS exploits the properties of integer polynomial
rings for its plaintext and ciphertext spaces. To this end,
RNS-CKKS encodes a vector of complex (including real) val-
ues 𝑥 ∈ C𝑁 /2 into a polynomial plaintext with integer co-
efficients 𝑝 (𝑋 ) ∈ Z[𝑋 ]/(𝑋𝑁 + 1), where 𝑁 denotes the de-
gree of a polynomial degree modulus. Then, based on the
Ring Learning with Errors (R-LWE) [46], RNS-CKKS en-
crypts a plaintext 𝑝 (𝑋 ) to a pair of polynomials ciphertext
𝑐 = (𝑐0 (𝑋 ), 𝑐1 (𝑋 )) ∈ (Z𝑄 [𝑋 ]/(𝑋𝑁 + 1))2, where the coef-
ficients of the polynomials are bounded by the ciphertext
coefficient modulus 𝑄 .

The encoding process determines the scale𝑚 of a plaintext
and a ciphertext. To construct a polynomial with integer
coefficients, RNS-CKKS multiplies a scale to the real-value
data 𝑥 and embeds a rounded integer 𝑣 = ⌊𝑚 ·𝑥⌉. For instance,
𝑣 = 123 (approximation) is used for 𝑥 = 1.234 at scale𝑚 =

100. In turn, the scale determines the range of an integer
value embedded in a plaintext and a ciphertext.

The encryption process controls the maximum level 𝑙 of a
ciphertext. Because the range of the coefficients bounds the
range of the embedded integer value, the coefficient modulus
𝑄 should be larger than the embedded integer values: i.e.,
⌊𝑚 · 𝑥⌉ < 𝑄 . Otherwise, a ciphertext is not recoverable. In
RNS-CKKS, the coefficient modulus 𝑄 is a multiple of small
moduli, also referred to as a rescaling factor 𝑅, and the level

303



Performance-aware Scale Analysis with Reserve for Homomorphic Encryption ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

: unused
: encoded
: removed 𝑟

𝑅

𝑅

𝑅

𝑅 scale

reserve

𝑚

Q = R! = 𝑟 ' 𝑚

rescaling factor 𝑅

coeff. modulus 𝑄

(a) Scale model

+ =

𝑚! = 𝑚" = 𝑚# 𝑟! = 𝑟" = 𝑟#

𝑄

𝑚!

𝑟!

𝑄

𝑚"

𝑟"

𝑄

𝑚#

𝑟#

(b) Addition

×
𝑄

𝑚!

𝑟!

=
𝑄 𝑚"

𝑟"

𝑚" = 𝑚! % 𝑚# 𝑄 % 𝑟" = 𝑟! % 𝑟#

𝑄

𝑚#

𝑟#

(c)Multiplication

𝑄! 𝑚′

𝑟

𝑅

Q! = 𝑄/𝑅 𝑚! = 𝑚/𝑅

𝑟𝑒𝑠𝑐𝑎𝑙𝑒

𝑄 𝑚

𝑟

(d) Rescale

Figure 1. The scale model for RNS-CKKS operations. The ciphertext has a coefficient modulus 𝑄 = 𝑅4 where R is the rescaling
factor.𝑚 and 𝑟 represent the scale and reserve of a ciphertext, respectively.

𝑙 of a ciphertext represents the number of rescaling factors
therein: i.e., 𝑄 ≈ 𝑅𝑙 (assuming uniform rescaling factors).

One major difference between BGV/FV and RNS-CKKS is
how to manage the encoded value and the noise. In BGV/FV,
the range of the encoded value is fixed and only the noise
grows during the program execution. On the other hand, in
RNS-CKKS, the range of both the encoded value and noise
varies according to scale and does not separately manage the
noise from the encoded value. Unlike BGV/FV which pro-
duces the precise value, RNS-CKKS allows an inherent error
from the noise. Hence, the parameter selection in BGV/FV
aims to prevent noise overflow, but the goal of parameter
selection in RNS-CKKS is to reduce the error, which is pa-
rameterized by scale, unlike the fixed noise of the operation.

The scale model in Figure 1a depicts the relations between
scale 𝑚, level 𝑙 , and coefficient modulus 𝑄 . Conceptually,
the coefficient modulus defines the range of the encrypted
variable, and the scale represents the actual magnitude of
the encrypted data. The multiple rescaling factors are incor-
porated to support a large coefficient modulus.
This paper newly introduces reserve 𝑟 , which represents

the unused bits in the coefficients of a polynomial, i.e., a
reserve allocated to ensure that the scale𝑚 of a ciphertext
remains less than 𝑄 in the succeeding operations. Table 1
summarizes the RNS-CKKS parameters and their relations.

2.2 RNS-CKKS Operations and Constraints
RNS-CKKS operations consist of arithmetic operations and
scale management operations, whose latency depends on
the level of operand ciphertexts. Table 2 summarizes the
operations and their constraints.

Some arithmetic operations require their operands to obey
operation-specific constraints. For addition (Figure 1b), the
scale and level of the two operands should be the same. The
result scale and level remain the same as the operands. For
multiplication (Figure 1c), only the level of the two operands
should coincide and the resulting level remains the same
as the operands. After multiplication, the scale of the re-
sult increases to the product of the two operand scales. On

Table 1. RNS-CKKS parameters and relations.

Param. Description

Encryption Key Parameters (Fixed)

𝑁 Polynomial modulus degree.
𝑄𝑚𝑎𝑥 Coefficient modulus of the encryption key.
𝐿 Level of 𝑄𝑚𝑎𝑥 .
𝑅 Rescaling factor. i.e., 𝑄𝑚𝑎𝑥 ≈ 𝑅𝐿

Ciphertext Parameters (Varying)

𝑄 Coefficient modulus of a ciphertext. i.e., 𝑄 < 𝑄𝑚𝑎𝑥

𝑚 Scale of an encoded plain/ciphertext.
𝑙 Level of a plain/ciphertext. i.e., 𝑙 < 𝐿 and 𝑄 ≈ 𝑅𝑙

𝑟 Reserve of a plain/ciphertext. i.e., 𝑟 = 𝑄/𝑚
` Relative scale. i.e., ` = log𝑅𝑚
𝜌 Relative reserve. i.e., 𝜌 = log𝑅 𝑟 and 𝜌 = 𝑙 − `.

Compiler Parameters (Fixed)

𝑊 Waterline. i.e.,𝑊 ≤ 𝑚

𝜔 Relative waterline. i.e., 𝜔 = log𝑅𝑊
𝑥𝑚𝑎𝑥 The maximum encoded value. i.e.,𝑚 · 𝑥𝑚𝑎𝑥 < 𝑄

Notations

⌈𝑥⌉ Ceiling function e.g., ⌈0.5⌉ = 1
{𝑥} Fractional part function. Defined as {𝑥} = 𝑥 + 1 − ⌈𝑥⌉.

e.g., {1} = 1.

the other hand, unary operations such as negation and ro-
tation do not have scale/level constraints and the resulting
scale and level remain the same as the operand’s. Note that
rotate operation rotates the position of each element in an
encrypted vector.
The scale management operations do not affect the en-

crypted values in a ciphertext, but change the level and scale
of a ciphertext. The scale management operations help users
to avoid scale overflow (exceeding 𝑄) due to multiplications
and satisfy the above arithmetic operation constraints. First,
rescale (Figure 1d) divides the embedded integer value of
a ciphertext by the rescaling factor 𝑅 and removes 𝑅 from
the coefficient modulus 𝑄 , hence dividing the scale𝑚 by 𝑅
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Table 2. RNS-CKKS operations and constraints.

Op. Description

Arithemetic Operations (affect encoded values)

× Multiplication. The ciphertext parameters of 𝑒1×𝑒2
is𝑚 =𝑚1 ·𝑚2 and 𝑙 = 𝑙1 = 𝑙2 where the scale and
level of 𝑒𝑖 is𝑚𝑖 and 𝑙𝑖 , respectively.

+ Addition.𝑚 =𝑚1 =𝑚2 and 𝑙 = 𝑙1 = 𝑙2.
− Negation.𝑚 =𝑚1 and 𝑙 = 𝑙1.

rotate Rotation.𝑚 =𝑚1 and 𝑙 = 𝑙1.

Scale Management Operations (not affect encoded values)

rescale Rescaling operation.𝑚 =𝑚1/𝑅 and 𝑙 = 𝑙1 − 1
modswitch Modulus switch operation.𝑚 =𝑚1 and 𝑙 = 𝑙1 − 1
upscale Upscaling operation.𝑚 =𝑚1 ·𝑚𝑢𝑝 and 𝑙 = 𝑙1

and decreasing the level 𝑙 by 1: i.e., 𝑚′ = 𝑚/𝑅, 𝑙 ′ = 𝑙 − 1,
and 𝑄 ′ = 𝑄/𝑅. Second, modswitch only removes 𝑅 from
the coefficient modulus 𝑄 , decreasing the level by 1 but not
changing the scale: i.e.,𝑚′ = 𝑚, 𝑙 ′ = 𝑙 − 1, and 𝑄 ′ = 𝑄/𝑅.
Finally, upscale multiplies a multiplicative identity with a
given scale, increasing the scale by the given scale. This work
assumes that the programmer writes computations using
arithmetic operations, and an FHE compiler inserts scale
management operations as in EVA [24] and HECATE [45].

The result scale of RNS-CKKS operations should be large
enough to mitigate the noise introduced by the operation.
In particular, the ciphertext multiplication (more precisely,
relinearize after multiplication), rotate, and rescale op-
erations add a scale-independent noise. Because the mag-
nitude of the noise is fixed, a larger (result) scale reduces
the relative magnitude of the noise. Hence, existing scale
management schemes allow a programmer to set the lower
bound of a scale, called waterline [24], and FHE compilers
insert rescale when the scale after rescale is larger than
the waterline instead of right after the multiplication.
To meet the RNS-CKKS operation constraints, the user

needs to insert scale management operation properly. Sup-
pose that the user inserts rescale right after × whose result
scale is larger than𝑊 · 𝑅 to prevent scale overflow, as in
EVA [24]. The reduced level of the multiplication result in-
troduces the level mismatch for × and +, so the user needs to
insert modswitch to adjust the level of the other operations.
Furthermore, + suffers from the scale mismatch, so the user
inserts upscale to match the scale of the operands of +.

3 Motivation
This section describes existing scalemanagement approaches
in the state-of-the-art RNS-CKKS compilers EVA [24] and
Hecate [45], and then discusses their three limitations, moti-
vating new solutions.

Table 3. Latency of RNS-CKKS operations for level 1 to 5
(`𝑠). The other parameters are 𝑁 = 215 and 𝑅 = 260.

Op Level

1 2 3 4 5

modswitch (plain) 29 43 57 71 86
modswitch (cipher) 48 86 156 208 286
cipher + plain 50 98 153 209 269
cipher + cipher 85 204 250 339 421
cipher × plain 211 421 642 853 1120
rescale (cipher) 1926 3119 4525 5706 6901
rotate (cipher) 3828 7966 13584 20933 28832
cipher × cipher 4363 9172 15658 23517 33974

3.1 Forward Static Scale Analysis
EVA [24] introduces a forward static scale analysis that ana-
lyzes the scale from the begin to the end of a program and
inserts a rescale operation if the resulting scale becomes
larger than the global waterline, given by programmers as
the scale of an input cipertext. This way, EVA intends to min-
imize the accumulated scale (𝑚 · 𝑅𝑙 ) of the program result,
which in turn determines the level of the input ciphertexts.

Consider an example program 𝑥3 · (𝑦2 + 𝑦) in Figure 2a
where input scale or waterline𝑊 = 20 (more precisely, 220)
and recaling factor 𝑅 = 60. EVA performs scale analysis and
adds scale management operations as shown in Figure 2b.
Starting from the input 𝑥 and 𝑦 with scale𝑚 = 20 (waterline
𝑊 ), each multiplication increases the result’s scale. EVA
inserts rescale when its result scale is larger than the wa-
terline. Since the scale of 𝑥2 is not large enough for rescale,
EVA does not insert rescale between 𝑥2 and 𝑥3, and the
level and latency of 𝑥2 and 𝑥3 are the same in Figure 2b.

An upscale operation is added to increase 𝑦’s scale from
20 to 40 so that the two operands of the addition 𝑠 = 𝑦2 + 𝑦
have the same scale 40. A rescale operation is inserted after
the last multiplication as it can reduce the scale of 𝑞 from 100
to 40 yet it remains larger than waterline𝑊 = 20. By rescal-
ing 𝑞, EVA can reduce the ciphertext size, saving storage and
network costs. Using the forward analysis, EVA can find that
the level of input ciphertexts should be 𝑙 ≥ 2 (to avoid scale
overflow and afford one rescale), and determines that the
minimal safe-to-use coefficient modulus 𝑄 = 𝑅2 = 120.
However, EVA’s static analysis does not find the optimal

level for each intermediate ciphertext, leading to sub-optimal
performance (latency). In RNS-CKKS, the level 𝑙 determines
the size of a ciphertext (Figure 1a) and thus the latency of
an RNS-CKKS operation. The lower level, the lower latency.
Table 3 shows the results of our latency experiments on dif-
ferent RNS-CKKS operations at different operand levels. As
cipher × cipher and rotate are common in deep learn-
ing and machine learning applications, it is crucial for an
RNS-CKKS compiler to manage levels of heavy operation.
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(b) Existing scale management (EVA) for Figure 2a.
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(c) Improved scale management reducing the level of heavy operations (step 1).
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(d) Improved scale management reducing the number of rescale operation (step 2).

Figure 2. Scale management plan and execution time for the example program (Figure 2a) that calculates 𝑥3 · (𝑦2 + 𝑦) of EVA
(Figure 2b) and this work (Figures 2c and 2d) for the given waterline 20. The cost is calculated with the latency at Table 3 and
the unit of the cost is 100`s. The numeric numbers for rescaling factor, waterline, scale, and reserve are given in the log base 2.

The new scale management solution in Figure 2c, enabled
by this work (which will be discussed later), applies rescale
operations to 𝑥 and𝑦 aggressively and early and allowsmany
operations to be performed with lower-level operands (level
1 vs. 2 in Figure 2b), reducing end-to-end latency. The early
rescale indeed increased the accumulated scales. However,
it does not harm the latency because the increased accumu-
lated scale fully utilizes the remaining scale (reserve) of the
result, and more importantly it does not increase the level.
Figure 2b has an under-utilized scale 20 in the last cipher-
text 𝑞′, whereas Figure 2c fully utilizes all 60 in 𝑞 and the
maximum level still remains to be 2.
The problem is that it is fundamentally hard for EVA’s

forward static analysis to perform such level-aware and thus
performance-aware scale management. The forward analysis
is oblivious to the succeeding operations when it inserts a
scale management operation, and thus it cannot optimize

the level of an operation without affecting other operations.
What is needed is a new construct that enables analyzing a
program in a backward direction with a scale budget. This
paper introduces the new reserve concept that represents the
required scale budget from succeeding operations and reserve
analysis that analyzes the reserve in a backward direction.

3.2 Tightly Coupled Scale Management and Analysis
Unlike arithmetic operations that are given by a program, the
number of scale management operations varies across differ-
ent scale management plans. As shown in Table 3, rescale
operation has the highest latency among three scale man-
agement operations: rescale > upscale > modswitch. The
latency of upscale is identical to that of cipher × plain or
cipher + plain depending on implementation. This implies
that if all remain equal, reducing the number of rescale
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operations is an important factor for RNS-CKKS program op-
timization. Yet, existing compilers do not separate the place-
ment of rescale operations from scale allocation, missing
the optimization opportunity.

Compared to Figure 2c that uses four rescale operations,
Figure 2d uses three and achieves lower latency. Two solu-
tions differ for the addition 𝑠 = 𝑦2 + 𝑦 in that the former
performs rescale on two operands before addition, and the
latter applies one rescale on the result after addition. To
enable the optimization, one should be able to determine
the position of a rescale operation, independent from the
scale allocation. For instance, for the addition result 𝑠 , scale
𝑚 = 20 and level 𝑙 = 1 in Figure 2c; and scale𝑚 = 80 and
level 𝑙 = 2 in Figure 2d. This case motivates a new construct
that remains invariant to rescale operations, decoupling
scale analysis from placing scale management operations.
The proposed reserve concept is invariant over rescale op-
erations and this work proposes a new rescale placement
method, decoupled from the reserve analysis.

3.3 Exploration-based Scale Management
Hecate [45] proposes an alternative iterative exploration-
based scale management. On each iteration, Hecate creates
multiple scale management plans, each of which adds a
scale management operation at a different (random) pro-
gram point, and generates candidate programs that obey
RNS-CKKS constraints by adding additional scale manage-
ment operations as needed. Hecate selects the one that is
statically estimated to have the least latency, and then Hecate
iteratively explores the scale management space using the
hill-climbing method. With a large number of iterations,
Hecate shows that it can achieve less end-to-end runtime
latency than EVA. However, as expected, the exploration dra-
matically increases its compilation time. For instance, Hecate
takes 483 seconds of compilation time for the deep-learning
application LeNet-5 (§8). Things would get worse for larger
networks. Furthermore, scale management time is impor-
tant because a faster scale management scheme opens a new
optimization chance such as bootstrap insertion and data
layout selection, which repeatedly invokes the scale man-
agement. This work aims to achieve a similar performance
improvement without extensive scale management space
exploration.

3.4 Problem Statement
Scale management is a process that inserts the scale man-
agement operation and generates a program that satisfies the
RNS-CKKS constraints without changing program semantics.
The goal of the optimizing compiler is not just finding a legal
scale management but finding an optimal scale management.
The optimal scale management problem is defined as:

Problem 1 (Optimal scale management problem). Find a set
of ciphertext parameters and additional scale management

operations that minimize the program latency from a given
program.

This work splits the goal of optimal scale management
problem into two-step sub-problems. The first step sub-problem
is minimizing the latency of arithmetic operations without
considering the overheads of scale management operations,
and the second step sub-problem is minimizing the total la-
tency without changing the reserve of the arithmetic operations.
The two-step problem-solving can simplify the original prob-
lem by liberating the compiler from tracing the overhead
of scale management operations in the first step and from
assigning reserves for each ciphertext in the second step.

Problem 1.1. Find a set of ciphertext parameters that mini-
mize the latency of arithmetic operations without consider-
ing the overheads of scale management operations.

Problem 1.2. Find a set of ciphertext parameters and addi-
tional scale management operations that minimize the total
latency for given reserves of the arithmetic operations.

4 Overview
This work newly introduces a new scale management term,
called reserve, which represents an available scale budget
that will be consumed by succeeding RNS-CKKS operations.
Figure 1 illustrates reserve 𝑟 as the unused bits in the coeffi-
cients of a polynomial, and its multiplied result with scale
𝑚 is equal to its coefficient modulus 𝑄 = 𝑟 ·𝑚. For addition,
reflecting the scale property (𝑚1 =𝑚2 =𝑚3), the reserves of
the two operands and the result are the same (𝑟1 = 𝑟2 = 𝑟3).
For multiplication, since the result’s scale is the product of
the two operand scales (𝑚3 = 𝑚1 · 𝑚2), and 𝑚 = 𝑄/𝑟 by
definition, the reserves have the relation 𝑄 · 𝑟3 = 𝑟1 · 𝑟2. For
rescale, unlike the scale that is changed by 1/𝑅, the reserve
remains unchanged, rendering the proposed reserve analysis
decoupled from the rescale operation placement.
This work newly presents a reserve type system (§5) to

correctly manage the reserves and efficiently analyze the
level (latency) of RNS-CKKS operations. Based on the reserve
type system, this work further proposes a new performance-
aware static scale analysis for an RNS-CKKS program, named
reserve analysis (§6), as a solution of Problem 1.1. The reserve
type system allows reserve analysis to keep track of the
reserve of each ciphertext and its minimum required level
to meet the RNS-CKKS (including waterline) constraints.

Figure 3 illustrates the proposed reserve analysis that con-
sists of allocation ordering, reserve allocation, and reserve
redistribution, using the same example program as in Fig-
ure 2a (whose details will follow). The reserve analysis is
a function-level analysis that operates on a function and
processes all the operations in the function. The allocation
ordering (§6.1) estimates the cost of each operation, analyzes
its dependence chain to the return values, and determines
the order of the reserve analysis prioritizing heavier (larger
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Figure 3. Overview of the reserve analysis and rescale place-
ment, using the same example program as in Figure 2a.

latency) operations. The reserve allocation (§6.2) assigns the
reserve of each operation based on the reserve type system.
Since a higher ciphertext level incurs longer latency for an
RNS-CKKS operation, to minimize levels and reserves, the
reserve allocation analyzes ciphertext reserves from the end
of the program starting with the minimal output reserve in a
backward way. The reserve redistribution (§6.3) reassigns re-
serves prioritizing heavy operation chains to further reduce
the levels of heavy operations.

Lastly, as a solution of Problem 1.2, this work proposes a
new rescale placement algorithm (§7) that places scale man-
agement operations for better performance. Starting from
default locations defined by the reserve allocation result,
the algorithm hoists scale management operations to new
locations based on cost analysis.

𝑃𝑟𝑔 ::= 𝐹

𝐹 ::= func fid ( 𝑣 : 𝑇 ) {𝑠; 𝑟𝑒𝑡 𝑒}
𝑠 ::= 𝑣 := 𝑒 | 𝑠; 𝑠
𝑒 ::= 𝑐 | 𝑣 | 𝑒 + 𝑒 | 𝑒 × 𝑒 | − 𝑒 | rotate (𝑒, 𝑖)
𝑇 ::= real | cipher (𝑟 ) |𝑇 → 𝑇

𝑣 ∈ variables, 𝑐 ∈ constants, 𝑖, 𝑟 ∈ Z+, fid : function id

Figure 4. The simplified syntax for an RNS-CKKS program.
The syntax is similar to that of [45] except for plaintext type
and scale management operations. 𝐴 means a list of 𝐴.

5 Reserve Type System
To simplify the reserve analysis (§6) and the rescale place-
ment algorithm (§7), this work proposes a new reserve type
system. Since a reserve represents a scale budget required
for the succeeding operations, reducing a reserve leads to
level reduction and in turn latency improvement. Figures 4
and 5 describe the syntax of an RNS-CKKS program interme-
diate representation (IR) and the typing rules of the proposed
reserve type system.

In the remaining part of this paper, we use log base R terms
of relativewaterline (𝜔 = log𝑅𝑊 ), relative scale (` = log𝑅𝑚),
and relative reserve (𝜌 = log𝑅 𝑟 ) to simplify a formula. In
addition, ⌈𝑥⌉ is a ceiling function, and {𝑥} = 𝑥 + 1 − ⌈𝑥⌉ is a
fractional part function. Note that {1} = 1, not 0.

5.1 Rationale
One major reason to introduce the reserve type is to pre-
cisely detect the chance of level reduction during reserve
analysis. As the scale of any ciphertext should be larger than
waterline:𝑚 = 𝑄/𝑟 >𝑊 , the level of the ciphertext needs
to satisfy the condition 𝑄 = 𝑅𝑙 ≥ 𝑊 · 𝑟 (i.e., 𝑙 ≥ 𝜔 + 𝜌) for
reserve 𝑟 and waterline𝑊 . The minimal level 𝑙 satisfying the
inequality, 𝑙 = ⌈𝜔 + 𝜌⌉, is called principal level. As multiplica-
tion changes the reserve of a ciphertext, its result principal
level can be different from its operand principal level. If so,
the multiplication is called a level-mismatch operation, im-
plying that rescale is necessary for its result. The crux of
this formulation is that only with its reserve 𝜌 (and a given
parameter 𝜔), the reserve analysis can infer the principal
level and the necessity of rescale, allowing it to identify
level reduction opportunities.
Another major reason to introduce the reserve type sys-

tem is to liberate the reserve analysis from scale management
operation placement. Since a reserve is a scale budget for
the succeeding operations, and the upscale operation can
reduce the reserve as needed, a reserve can represent any re-
serve that is larger than itself. Introducing the subtyping rule
(Equation Sub) that a larger reserve is a subtype of a smaller
one. The reserve analysis can safely omit the scale man-
agement operation because the type system allows implicit
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Γ ⊢ 𝑒 : 𝑇 Under context Γ, 𝑒 has type 𝑇 . Γ ⊢ 𝑠 : Γ′ Under context Γ, 𝑠 produces context Γ′.

Γ ⊢ 𝑒 : cipher(𝜌) 𝜌 ′ ≤ 𝜌

Γ ⊢ 𝑒 : cipher(𝜌 ′) (Sub)
Γ, 𝑣 : 𝑇 ⊢ 𝑠 : Γ′ Γ′ ⊢ 𝑒 : 𝑇 ′

Γ ⊢ func fid ( 𝑣 : 𝑇 ) {𝑠; 𝑟𝑒𝑡 𝑒} : 𝑇 → 𝑇 ′
(Func)

Γ ⊢ 𝑐 : real (Const)

Γ ⊢ 𝑒1 : cipher(𝜌) Γ ⊢ 𝑒2 : real
Γ ⊢ 𝑒1 + 𝑒2 : cipher(𝜌)

(PAdd)
Γ ⊢ 𝑒 : cipher(𝜌)

Γ ⊢ rotate(𝑒, 𝑖) : cipher(𝜌) (Rot)
Γ ⊢ 𝑒 : 𝑇
Γ ⊢ −𝑒 : 𝑇 (Neg)

Γ ⊢ 𝑒1 : cipher(𝜌) Γ ⊢ 𝑒2 : cipher(𝜌)
Γ ⊢ 𝑒1 + 𝑒2 : cipher(𝜌)

(Add)
Γ ⊢ 𝑒1 : cipher(𝜌 + 𝜔) Γ ⊢ 𝑒2 : real

Γ ⊢ 𝑒1 × 𝑒2 : cipher(𝜌)
(PMul)

Γ ⊢ 𝑒1 : cipher(𝜌1) Γ ⊢ 𝑒2 : cipher(𝜌2) 𝑙 = ⌈𝜌1 + 𝜔⌉ = ⌈𝜌2 + 𝜔⌉ 𝜌1 + 𝜌2 = 𝜌 + 𝑙
Γ ⊢ 𝑒1 × 𝑒2 : cipher(𝜌)

(Mul)

Figure 5. Typing rules of reserve type system.𝑊 means the minimal scale required by rescale operation.

conversion between this type mismatch, separating reserve
analysis from scale management operation placement.

5.2 Typing Rules
Figure 5 presents the typing rules of the reserve type sys-
tem. In this section, we mainly discuss the subtyping rule
(Equation Sub) and the ciphertext multiplication rule (Equa-
tion Mul). Note that unary and addition operations simply
have the same type for operands and results.

Subtyping:The reserve type system defines the subtyping
rule, Equation Sub, instead of introducing scale management
operations, thus hiding scale management operations from
the type system. For a given cipher type with reserve 𝑟 , the
subtyping rule accepts another cipher type with a lower
reserve 𝑟 ′, which can be generated by any sequence of scale
management operations: upscale, rescale, and modswitch.
Because upscale can reduce reserve as needed, any reserve
𝑟 ′ ≤ 𝑟 (i.e., 𝜌 ′ ≤ 𝜌) is a subtype. The reserve is invariant for
rescale, and modswitch is a combination of upscale and
rescale.

Multiplication: The typing rule for multiplication (Equa-
tion Mul) incorporates the level and waterline constraints.
From𝑚1 ·𝑚2 = (𝑅𝑙/𝑟1) · (𝑅𝑙/𝑟2) = (𝑅𝑙/𝑟 ) = 𝑚, the equal-
ity 𝑟1 · 𝑟2 = 𝑟 · 𝑅𝑙 (i.e., 𝜌1 + 𝜌2 = 𝜌 + 𝑙) holds for 𝑒1 × 𝑒2,
where 𝑒1, 𝑒2, 𝑒1 × 𝑒2 has reserve 𝑟1, 𝑟2, 𝑟 respectively, and
the principal level 𝑙 of operands commonly. The principal
level 𝑙 = ⌈𝜌1 + 𝜔⌉ = ⌈𝜌2 + 𝜔⌉ comes from the waterline con-
straint described in §5.1. Another multiplication rule (Equa-
tion PMul) is the specialization for the ciphertext-plaintext
multiplication, assuming that the plaintext is encoded with
waterline W (i.e., 𝜌2 = 𝑙 − 𝜔).

These typing rules are used for the backward analysis to
distribute reserves. Details about how the backward analysis
exploits the typing rules are described in §6.2.

6 Reserve Analysis
The goal of the reserve analysis is to minimize the princi-
pal levels to reduce the latency of each operation. Unlike

existing forward analysis which uses a fixed input scale and
derives the output accumulated scale for each operation,
the backward reserve analysis uses a fixed output reserve
and analyzes the input reserve for each operation. Hence,
minimizing the reserve of an operation directly affects the
level of the operation and allows aggressive level reduction,
contrary to the forward analysis which does not control the
level of each operation.
The main idea of the reserve analysis is that the analysis

can aggressively reduce the level of a heavy operation (e.g.,
rotate) by deferring level-mismatch to the earlier point of
the program. The analysis prioritizes heavy (high latency)
operations with allocation ordering to increase level reduc-
tion impacts (§6.1), allocates the reserve of ciphertexts based
on the allocation order (§6.2), and defers the level-mismatch
with reserve redistribution (§6.3) during reserve allocation.

6.1 Allocation Ordering
Allocation ordering gives a processing order for the reserve
analysis algorithm to prioritize heavy operations. The in-
sight behind the allocation ordering is that the level of a
heavier operation affects the total latency more than the
lighter operations, and the reserve allocation should give
more optimization chances such as deferring level-mismatch
to the heavier operations. Furthermore, the allocation or-
dering scheme groups the operations that have the same
arithmetic structure with the same multiplicative depth as
one operation, thus removing duplicated analysis and reduc-
ing the analysis time.
To prioritize a heavy operation, the algorithm first esti-

mates the latency of each operation. The level and opera-
tion type determine the latency of the operation, but the
algorithm does not know the level before reserve allocation.
Hence, the algorithm estimates the level from the multiplica-
tive depth and waterline as 1 + 𝑑𝑒𝑝𝑡ℎ · 𝜔 which is the lower
bound of the level, assuming the minimal level increase (𝜔)
for each multiplication. The multiplicative depth means the
maximum number of multiplications on the paths from the
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operation to the return value (starting from 1, not 0). The
estimator interpolates the estimated latency from the latency
table as the estimated level is often not an integer.

For example, derived from the same program in Figure 2a,
𝑥3 in Figure 3a has the multiplicative depth of 2 because 𝑞
is the result of a multiplication. Based on the multiplicative
depth, the level is estimated as 1 + 2 × 1/3 (from 𝜔 = 20/60).
Then, the cost is computed by 44 × 1/3 + 92 × 2/3 = 76 by
interpolating the costs 44 and 92 of ciphertext multiplication
for levels 1 and 2, respectively.
Based on the latency estimation, the ordering prioritizes

the succeeding operations of a heavy operation because the
reserve of succeeding operations needs to be allocated prior
to the heavy operation. This work prioritizes the succeeding
operations based on the dependency chain with the largest
multiplicative depth from the heavy operation to the return
value. If two different chains have the same depth, lower-
depth operation in the chains is prioritized. For operations
with the same operation and chain depths, the ordering uses
the chain from the next heaviest operation as the tie-breaker.
Figure 3b shows how to order the operations. The algo-

rithm tracks the longest dependency chain (𝑞, 𝑥3, 𝑥2) for the
heaviest operation 𝑥2, and then prioritizes the lower-depth
operation (𝑞 > 𝑥3 > 𝑥2). The next heaviest operation, 𝑥3
is omitted because its dependency chain is a subset of 𝑥2’s,
then the algorithm finds the dependency chain (𝑞, 𝑠,𝑦2) of
the next operation 𝑦2, and so on.

6.2 Reserve Allocation
Given the allocation order from earlier step, reserve alloca-
tion infers and allocates the reserve of each ciphertext. For
each ciphertext, the allocation algorithm selects the max-
imum value among incoming reserve values (reserve-ins)
from its uses, which is the least common supertype for the
reserve-ins.
For example, Figure 3c illustrates how reserves are allo-

cated along the reversed (backward) dependency graph. The
gray number represents reserve-ins/outs and the black num-
ber stands for the result’s reserve selected. The initial case
for 𝑞 (starting from reserve 0) will be explained later. 𝑥 in
Figure 3c has two reserve-ins 97 and 75, and the algorithm
sets the reserve of 𝑥 as 97. Then, the reserve allocation infers
its out-going reserve (reserve-out) using the typing rules in
Figure 5. For all the operations except multiplication, the
operand reserve is the same as the result reserve, so the
reserve allocation sets the reserve-out as the reserve.
For multiplication whose operand reserves differ from

the result reserve, the reserve allocation algorithm should
compute the operand reserves from the result reserve. For
plaintext multiplication, the operand reserve is 𝜌𝑜𝑝 = 𝜌 +
𝜔 for a given ciphertext reserve 𝜌 . If the operand reserve
does not satisfy the waterline condition 𝑙 ≥ 𝜌𝑜𝑝 + 𝜔 = 𝜌 +
2𝜔 , the level of the operand is different from the result, the
multiplication is marked as a level-mismatch operation.

For ciphertext multiplication, the allocation algorithm
should infer the operand reserves 𝜌1 and 𝜌2 with the re-
sult reserve 𝜌 and the operand level 𝑙 . Note that the operand
level 𝑙 is determined by the operand reserves, not the given
result reserve. Thus, the allocation algorithm should infer
the operand level first. From 𝜌1 + 𝜌2 = 𝜌 + 𝑙 at Equation Mul,
⌈𝜌 +𝑙 +2𝜔⌉ = ⌈𝜌1+𝜌2+2𝜔⌉ ≤ ⌈𝜌1+𝜔⌉ + ⌈𝜌2+𝜔⌉ = 2𝑙 . Since
𝑙 is integer, ⌈𝜌 + 𝑙 + 2𝜔⌉ = ⌈𝜌 + 2𝜔⌉ + 𝑙 ≤ 2𝑙 , so ⌈𝜌 + 2𝜔⌉ ≤ 𝑙 .
Since 𝑙 = ⌈𝜌1 + 𝜔⌉ = ⌈𝜌1 + 𝜔⌉, the allocation algorithm can
always satisfy the equality condition, 𝑙 = ⌈𝜌 + 2𝜔⌉, by con-
trolling reserve allocation on 𝜌1 and 𝜌2. Then, the reserve
allocation equally distributes the reserves to each operand:

𝜌1 = 𝜌2 = (𝑙 + 𝜌)/2 𝑤ℎ𝑒𝑟𝑒 𝑙 = ⌈𝜌 + 2𝜔⌉ (1)

If the operand level ⌈𝜌 + 2𝜔⌉ is different from the result level
⌈𝜌 + 𝜔⌉, the multiplication is a level-mismatch operation.
For example, 𝑞 in Figure 3c has the reserve of 0 (𝜌 = 0/60).

Since 𝑙 = ⌈𝜌 + 2𝜔⌉ = ⌈40/60⌉ = 1 where the waterline is 20
(𝜔 = 20/60), 𝜌1 = 𝜌2 = (𝜌 + 𝑙)/2 = 30/60, and its reserve-out
becomes 30. According to the allocation order, the allocation
algorithm continues to infer reserves of 𝑥3 with its reserve-in
of 30. Here, 𝑙𝑥3 = ⌈𝜌𝑥3 + 2𝜔⌉ = ⌈30/60 + 40/60⌉ = 2, so 𝑥3

becomes level-mismatch.

6.3 Reserve Redistribution
The reserve redistribution algorithm removes unnecessary
level increases caused by the reserve allocation that equally
distributes the reserves into operands. Since the level in-
creases at the level-mismatch operations, the reserve redis-
tribution algorithm first finds the level-mismatch operations
in which result and operand levels are different (⌈𝜌 + 2𝜔⌉ ≠
⌈𝜌 + 𝜔⌉). If so, since {𝜌 + 2𝜔} is the overflowed part from
the ceiling, by decreasing 𝜌 by {𝜌 + 2𝜔}, the reserve redistri-
bution algorithm can avoid the level-mismatch. Because the
ciphertext reserve should be the maximum reserve among
its reserve-ins, all of the reserve-ins should be equal to or
smaller than 𝜌 − {𝜌 + 2𝜔}.
To remove the evitable level-mismatch, the algorithm it-

erates the users of the level-mismatched multiplication. If
the user cannot redistribute the reserve (e.g., addition), the
algorithm recursively finds the proper redistribution target
until the required reserve reduction is achieved. If the user
is the ciphertext multiplication, the reserve can be redis-
tributed from the other operand (i.e., redistribution target) to
the level-mismatched multiplication. If the redistribution tar-
get is prioritized over the level-mismatched multiplication,
the reserve-out to the target only can increase until the ci-
phertext reserve of the target (𝜌𝑟𝑒𝑑𝑖𝑠𝑡 = 𝜌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜌𝑡𝑎𝑟𝑔𝑒𝑡,𝑢𝑠𝑒𝑟 ).
Otherwise, the reserve-out to the target can increase freely.
Note that the redistribution should not change the principal
level of each operand.
Figure 3e shows the example of reserve redistribution

where the redistribution target has lower priority than the
level-mismatched multiplication. 𝑥3 has a higher priority
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than the 𝑦2, so redistribution can redistribute reserve un-
til the principal level is not changed. Then, the maximum
amount of redistribution is 10 because the maximum reserve
for the given level is 40. The required amount of redistri-
bution is 10 ({𝜌 + 2𝜔} = {30/60 + 2 · 20/60} = 10/60), so
the redistribution is succeeded. Figure 3d show the reserve
allocation result after redistribution.

6.4 Optimality of Reserve Analysis
The reserve analysis allocates the reserve of each operation
one by one. For each allocation step, the reserve analysis
minimizes the arithmetic operation latency for the given
reserve allocation results of the previous steps at each reserve
allocation step, guaranteeing the local optimal solution of
Problem 1.1.
Assumption 1. The results of the previous allocation steps
are locally optimal. The reserve analysis has allocated re-
serves for the operation with higher priority than the current
arithmetic operation in the previous steps, and cannot in-
crease the allocated reserves at the current step. The reserve
analysis can freely change only the reserves of the operations
with lower priority than the current arithmetic operation.
Theorem 1 (Local-optimality of Reserve Analysis). The re-
serve analysis produces a local-optimal solution to the scale
management problem for arithmetic operations. In other words,
at each reserve allocation step, the reserve analysis produces
an optimal solution for the given reserve allocation results of
the previous steps.

Proof. Showing that there does not exist a better reserve
allocation 𝐴∗ that has a lower arithmetic latency than the
reserve analysis result𝐴 for the given results of the previous
steps in a certain reserve allocation step for an operation 𝑜𝑝 .
(Step 1) Let’s assume that an reserve allocation 𝐴∗ has a

lower latency than 𝐴. Since 𝐴∗ is faster than 𝐴, the level of
the 𝑜𝑝 in 𝐴∗ is lower than 𝐴, meaning that level-mismatch
occurs only in 𝐴. In other words, the allocated reserve 𝜌∗ of
the 𝑜𝑝 in 𝐴∗ is smaller than the allocated reserve 𝜌 in 𝐴, and
𝜌∗ is small enough not to suffer from level-mismatch.
(Step 2) If the 𝑜𝑝 is level-mismatched, the reserve redis-

tribution algorithm finds its redistribution target, and redis-
tributes the allocated reserve 𝜌 of 𝑜𝑝 to the target. Since
the target has a higher priority and its redistributable re-
serve (defined by 𝜌𝑟𝑒𝑑𝑖𝑠𝑡 = 𝜌𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜌𝑡𝑎𝑟𝑔𝑒𝑡,𝑢𝑠𝑒𝑟 ) is not large
enough to avoid level-mismatch, 𝐴 cannot reduce 𝜌 , and
level-mismatch occurs.
(Step 3) On the other hand, 𝐴∗ redistributes the reserve of

𝑜𝑝 to the target, reducing the reserve from 𝜌 to 𝜌∗. Since 𝐴∗

avoids the level-mismatch, the redistributed reserve is larger
than the redistributable reserve (𝜌 − 𝜌∗ > 𝜌𝑟𝑒𝑑𝑖𝑠𝑡 ), changing
the reserve of the target which has a higher priority as the
given condition.
By contradiction, 𝐴∗ cannot exist, and 𝐴 is the optimal

solution for the reserve allocation step. □

To find a better solution, the compiler needs to test mul-
tiple allocation orders because the local optimal solution
preserves the reserve allocation results of the previous steps,
and the allocation order affects the quality of the solution.
To find the global optimal solution, the compiler should
extend the reserve redistribution algorithm to redistribute
the reserve from the higher priority operation to the lower
priority operation, removing Assumption 1. However, ei-
ther extension increases the compilation cost a lot like the
exploration-based scale management scheme, so this work
only finds the local optimal solution, whose performance is
competitive to the exploration-based scheme in practice.

7 Rescale Placement
The rescale placement algorithm consists of two steps such as
scale management operation insertion and rescale hoisting.

The scale management operation insertion step translates
the reserve-typed program into RNS-CKKS compliant pro-
gram where scale management operations are well placed
satisfying the RNS-CKKS constraints. On one hand, the place-
ment algorithm inserts rescale to the result of level mis-
matched multiplications such as 𝑥2 and𝑦2 in Figure 3f whose
result principal level is different from the operand principal
level. On the other hand, the algorithm inserts upscale and
rescale between the reserve-in and the ciphertext if their
principal levels and reserves are mismatched like 𝑥 and 𝑦 in
Figure 3f. Thus, the scale management operation insertion
can resolve the reserve and level mismatch from subtyping.

The rescale hoisting step moves a rescale operation to a
later position if profitable. Since the reserve analysis finds
level-mismatched operations at the earliest places, the hoisted
position is always behind the current position, simplifying
the hoisting analysis. First, the hoisting algorithm estimates
the benefit of dynamic programming. There exist three cost
sources such as level increases, the hoisted source rescale,
and the destination rescale. In Figure 3h, the hoist increases
the level of 𝑠 from 1 to 2, thus causing the cost of 1. Since
the two rescale operations are hoisted to one rescale, the
source cost is 38 (19 × 2) and the destination is 19 (19 × 1).
From the estimated costs, the algorithm computes the benefit
as 18 (38 - 1 - 19).
Here, even if the hoisted rescale is not beneficial, the

hoisting algorithm keeps the destination rescale as a fur-
ther hoisting candidate. If the hoisting algorithm finds a
beneficial hoisting opportunity for the candidate whose ben-
efit is larger than the current costs, the hoisting algorithm
hoists the rescale operations. Then, the algorithm trans-
forms the program. If the use of the source rescale is one,
the rescale operation can be removed.
The proposed algorithm may not produce the globally

optimal solution for Problem 1.2. The proposed algorithm
cannot find all of the beneficial hoisting candidates, because
the algorithm only reflects the benefit from the rescale
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Table 4. Compile time of EVA, Hecate, and this work. (Speedup over Hecate)

Benchmarks # Ops # Iters Compile Time (ms) Scale Management Time (ms)

EVA Hecate This work Speedup EVA Hecate This work Speedup

SF 60 553 97.31 319.4 94.11 3.39x 1.641 215.4 0.1405 1533x
HCD 110 736 111.5 494.1 106.8 4.63x 3.190 395.3 0.2151 1838x
LR 123 2675 106.2 4441 109.2 40.66x 2.946 4386 0.2497 17562x
MR 550 3326 215.4 8879 216.0 41.06x 5.323 8688 0.3451 25177x
PR 183 5959 129.0 15768 130.7 120.01x 4.839 15708 0.4031 38965x
MLP 462 677 233.7 2074 232.5 8.92x 3.903 1829 0.2324 7868x

Lenet-5 8895 14763 6802 482.7E3 6805 70.92x 91.50 476.1E3 4.7528 100169x
Lenet-C 9845 13208 7333 469.3E3 7330 64.03x 99.93 462.3E3 5.2385 88253x

removal when the use of the source rescale is one, without
considering rescale operations with multiple uses.

8 Evaluation
This work implements the proposed reserve analysis, re-
serve type system, and code transformations on the top of
MLIR compiler framework [41] and usesMicrosoft SEAL [52]
(Release 3.6.1) for the RNS-CKKS backend library. This eval-
uation makes comparison with the state-of-the-art EVA [24]
and Hecate [45] in terms of compilation time and perfor-
mance (runtime latency).
This work implements DSL on python that is similar to

Hecate DSL. The frontend transforms the python code into
the MLIR dialect for this work. The entire compiler frame-
work is open-sourced at the github repository [37]. For the
benchmarks, we implemented and tested the eight machine
learning and deep learning applications: Sobel Filter (SF),
Harris Corner Detection (HCD), Linear Regression (LR), Mul-
tivariate Regression (MR), Polynomial Regression (PR), Multi-
layer Perceptron (MLP), Lenet-5 onMNIST dataset [42] (Lenet-
5), and Lenet-5 with CIFAR-10 dataset (Lenet-C). The bench-
mark sets are the same as those used in Hecate except for
the newly added Lenet-CIFAR (Lenet-C).

The image processing benchmarks SF and HCD use 4096
pixels of 64 × 64 images. The regression benchmarks use
16384 randomly generated inputs for each variable. They
perform a training workload that computes the correspond-
ing function. The deep learning benchmarks use random
input from MNIST and CIFAR-10 datasets, performing an
inference workload. This work uses the gradient descent al-
gorithm for the regression benchmarks with two epochs. The
benchmarks assume a packed ciphertext with 16384 slots.
This evaluation runs experiments on Intel(R) Core(TM)

i7-8700@ 3.20GHz with 64GB RAM. For all EVA, Hecate, and
this work, the same RNS-CKKS settings are used. The rescal-
ing factor 𝑅 = 260 and polynomial modulus 𝑁 = 215. This
work sets the security level as 128-bit for all the experiments.

8.1 Compilation Time
Table 4 shows the compile time of EVA, Hecate, and this work.
# op represents the number of operations in the program and
represents the size of the program. # iter reports the number
of explored plans in Hecate, representing the complexity of
the program. For example, MLP consists of 462 operations
which are 4x larger than LR, but the iteration is 4x smaller.
MLP includes two matrix multiplication and two square op-
erations with a single input which does not introduce the
arithmetic between different multiplicative depths. However,
LR includes the subtraction between different multiplicative
depths and two different inputs, hence the compiler needs to
examine more scale management plans than MLP. The most
complex and heavy benchmark is Lenet-5 and Lenet-C. The
difference between them is that Lenet-C requires a little bit
smaller iteration but consists of more operations.
Compile time includes I/O time and the processing time

for scale management and the other optimizations including
common subexpression elimination and dead code elimi-
nation. Without iterative exploration, this work achieves
24.44× speedup over Hecate on average. The compilation
time of this work mainly comes from the other processing
and I/O, not from scale management time. The scale manage-
ment time contributes only to 0.14% of the total compilation
time.
The most notable benchmarks are Lenet-5 and Lenet-C

benchmarks that Hecate takes very long scale management
time. The structure of LeNet is Conv - 𝑥2 - AvgPool - Conv
-𝑥2 - AvgPool - FC - 𝑥2 - FC - 𝑥2 - FC which has 11 multi-
plicative depths. Furthermore, the rotation and additions are
applied in Conv, Avg, FC layers. In the evaluation, Hecate
reports more than 40 candidate places to insert additional
scale management operations, and the brute force search
requires more than 240 iterations.
The comparison on the scale management time achieves

15526× speedup over Hecate on average. The speedup of
scale management time mainly comes from the removal of
exploration. The theoretical speedup should be on par with
the #iter, but this work achieves further speedup. The ra-
tio of actual speedup over the theoretical speedup is 5.744x
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Figure 6. Latency comparison of EVA, Hecate, and this work for a set of waterline parameter (15-50).

on average. The additional speedup comes from the differ-
ence between the single iteration of Hecate and this work.
Because Hecate includes multiple optimization passes like
CSE and DCE in exploration to precisely reflect the explored
performance, the single iteration is much heavier than this
work which does not include additional optimizations in
scale management. Furthermore, this work achieves a 15x
speedup over EVA, mostly coming from scale management
units, similar to Hecate, that reduces analysis space.

8.2 Performance
Figure 6 shows the latency of the program compiled by EVA,
Hecate, and this work. The latency of EVA shows the limita-
tion of forward analysis that the scale management scheme
suffers to control the level and latency. Hecate shows the ef-
fect of performance-aware optimization (at the cost of expen-
sive exploration). This work shows almost the same latency
with Hecate for the same parameter and 41.8% performance
improvement compared to EVA.
In general, this work achieves similar performance to

Hecate for most parameters. This work achieves better per-
formance (max 8.7%) on a few parameters in SF, HCD, Lenet-
5, and Lenet-C. Hecate uses a hill-climbing method that con-
verges to local optima not globally optimal. Thus, it could not
find a better scale management plan. On the other hand, this
work shows some slowdown (max 6.5%) on a few parameters
in LR, PR, and MR. Further investigation reveals that the dif-
ference comes from the latency of rescale operations. The
rescale placement algorithm was not able to hoist rescale
operations to optimal places for some multi-use cases.

We also compare the error of the program compiled by
EVA, Hecate, and this work on two waterlines in Figure 7.
Hecate extensively uses downscale to minimize the scale of
each ciphertext. However, minimizing the scale may increase
the error because the noise introduced by RNS-CKKS opera-
tions remains invariant to the ciphertext scale and the error
is noise over scale. In contrast, this work reflects the cascad-
ing effect with reserve, thus not unnecessarily minimizing
the scale if it does not improve the performance. Hence, this
work gives more chances to increase the scale of each cipher-
text and reduces the errors in general without sacrificing
the performance thanks to the performance-aware reserve
analysis. Thus, this work unexpectedly shows a better error
for the parameter in general.

8.3 Performance Improvement Breakdown
Figure 8 shows the breakdown of the proposed algorithms
for two waterlines. BA is the baseline implementation of
reserve-based backward analysis that does not include scale
redistribution (§6.3) and rescale placement (§7). RA is the
reserve allocation implementation that includes scale redis-
tribution, but not rescale placement. On average, RA and this
work achieve 9.1% and 11.6% speedups over BA for𝑊 = 20.
Speedup was 7.4% and 19.6% for𝑊 = 40, respectively.
Comparing Figure 8a and Figure 8b, the speedup from

each algorithm depends on the type of benchmark. For ex-
ample, RA does not show speedup over BA on MLP, Lenet-5,
and Lenet-C. The speedup of RA over BA is attributed to
scale redistribution, which is expected to take effect when
there are multiplications between two different ciphertexts.
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Figure 7. Error comparison of EVA, Hecate, and this work
for two different waterlines (𝑚𝑤)

The majority of ciphertext multiplications in deep learning
benchmarks are indeed squaring the same ciphertexts. Hence,
scale redistribution has little impact on them.
On the other hand, this work does not show speedup

over RA on the regression benchmarks LR, MR, and PR.
The speedup over RA stems from rescale placement, which
targets addition between two different ciphertexts. More pre-
cisely, the ciphertext summation can be classified into two
classes. The first class is the internal summation that adds up
the data stored within a ciphertext, requiring rotation. The
other external summation sums up the data stored in differ-
ent ciphertexts. Rescale placement does not make a visible
impact on the internal summation case, which is common in
regression benchmarks. Hence, no speedup is noticed.

9 Related Work
There are many fully homomorphic encryption libraries, in-
cluding HElib [38], PALISADE [50], SEAL [52], and HEaaN
[36]. All of these libraries have implementations of specific
HE schemes, and provide a low level FHE operations for pro-
grammers to implement application. In [54], they evaluates
the existing FHE compilers and tools to show performance
and usability aspects on various applications. The existing
FHE compilers and languages hide the complex details of
FHE schemes behind a high-level language and automatically
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Figure 8. Performance comparison of Backward Analysis
without the reserve redistribution and rescale placement
(BA), Reserve Allocation without rescale placement (RA),
and this work.

choose an appropriate encryption parameter for a given ap-
plication. Furthermore, the existing FHE compilers propose
various optimization techniques for FHE applications.

9.1 General-purpose HE compilers
Previous works [4, 10, 15, 17, 22–24, 43, 53, 55] proposes new
programming languages or the implementation of general-
purposeHE applications for existing programming languages.
The programming language and compiler for non-CKKS

schemes are proposed by several works. For GSW variants
that use a boolean circuit program, Cingulata [10, 17], E3 [15],
Marble [55] and Google’s transpiler [35] target program-
ming language and runtime supports to run general pur-
pose C++ program over encrypted data and Lobster [43]
uses program synthesis to optimize the Cigulata program.
For BGV/BFV schemes that support integer encoding with
encryption parameter and SIMD processing with packed ci-
phertext, RAMPARTS [4] targets a system for optimizing
arithmetic computation circuit, supporting direct evaluation
of a general-purpose Julia functions over encrypted data on
PALISADE [50] library. ALCHEMY [23] supports parame-
ter optimization for the Haskell front-end. The Porcupine
compiler [22] and HECO [53] proposes data layout optimiza-
tion that optimizes ciphertext packing for vectorized HE
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kernels. Coyote [47] proposes a new FHE-aware vectoriza-
tion for general purpose (even non-regular) applications by
co-optimizing data layout and vector packing. While the
compilers only target non-CKKS schemes [8, 16, 27] or lack
consideration for RNS-CKKS scale management, this work
proposes performance-aware scale management for CKKS-
schemes.
Since RNS-CKKS requires users to match scale and level

of each operands, scale manipulation needs a huge program-
ming efforts. So, Encrypted Vector Arithmetic (EVA) [24]
and Hecate [45] introduces a new language for FHE com-
putation, designed to be an intermediate representation for
other domain-specific languages to ease the burden of FHE
parameter optimization. EVA provides arithmetic operations
on fixed-width vectors and facilitates encrypted SIMD com-
putations. EVA includes an optimizing compiler that pro-
vides a static scale management scheme. Hecate [45] intro-
duces a new scale management space exploration with proac-
tive rescaling algorithm. Unlike EVA optimizes the level,
Hecate directly optimizes latency with performance estima-
tion. ELASM [44] improves Hecate to reflect the error of the
program.
This work adopts advantages only of EVA and Hecate

in terms of scale management: a performance-aware and
exploration-free scale management. This work provides bet-
ter scale management than EVA in terms of performance and
Hecate in terms of compilation time with a new performance-
aware backward static scale management that consists of
a new reserve concept and reserve allocation and rescale
placement algorithms.

9.2 Domain-specific HE compilers
Other works [5, 6, 11, 25] target specific domains like DNN
inference. CHET [25], nGraph-HE [5, 6] and AHEC [11] are
optimizing compilers that enable privacy-preserving deep
learning. CHET targets layout selection for packed cipher-
text, transforming an input tensor computation circuit into
a sequence of FHE operations using domain-specific infor-
mation. On the other hand, nGraph-HE and AHEC target to
support various frontend and backend to enhance usability.
nGraph-HE, which extends Intel’s nGraph [49], implements
the HE backend for nGraph to use the neural networkmodels
with TensorFlow [1]. Furthermore, nGraph-HE proposes a
CKKS-specific optimization called lazy rescaling that places
rescale operations only after linear layers. AHEC supports
nGraph and TensorFlow as frontend and also supports multi-
ple hardware backends with GPU-based HE libraries. All of
these compilers support various HE-specific optimizations
to improve the performance of the HE applications.

This work can be applied to existing domain-specific com-
pilers, so the existing compiler can get benefit from the lower
compilation time and faster performance of the proposed
performance-aware static scale management to further im-
prove the performance of the target application.

10 Conclusion
This work proposes a new performance-aware static scale
analysis for efficient RNS-CKKS scale management, called
reserve analysis. With the newly proposed reserve term and
its type system, this work can decouple the reserve anal-
ysis from scale management operations. With the reserve
allocation algorithm, this work can statically optimize scales
and levels for each ciphertext. Finally, with the rescale place-
ment algorithm, this work can find an efficient position for
a rescale operation. Compared to the exploration-based
scale management, this work achieves similar performance
improvement (41.8% speedup over the existing conservative
static analysis) with 15526× faster scale management time.
The proposed light-weight scale management scheme

makes a wide range of optimization schemes practical such
as data layout selection and bootstrap insertion although
the proposed algorithm may not find the global optimal so-
lution. The proposed algorithms are heuristic, which find a
satisfiable solution with a small compilation time instead of
finding the globally optimal solutionwith a huge compilation
time. Since many homomorphic optimizations repeatedly
require scale management to verify their correctness and
efficiency, a fast and effective scale management scheme is
crucial for optimizations. We will leave the application of
the scale management schemes to homomorphic encryption
with global-level scale optimization as a future work.
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